
Regaining Lost Seconds:
Efficient Page Preloading for SGX Enclaves
Ximing Liu

liuximing@mail.nankai.edu.cn
Nankai University

Tianjin, China

Wenwen Wang
wenwen@cs.uga.edu
University of Georgia

Athens, GA, USA

Lizhi Wang
nku_liz@mail.nankai.edu.cn

Nankai University
Tianjin, China

Xiaoli Gong*

gongxiaoli@nankai.edu.cn
Nankai University

Tianjin, China

Ziyi Zhao
troppingz@gmail.com

Nankai University
Tianjin, China

Pen-Chung Yew
yew@umn.edu

University of Minnesota
Minneapolis, MN, USA

Abstract
Intel SGX is already here, with a strong emphasis on security
and privacy. However, it is not free. Studies have shown that
it incurs a significant performance overhead to take advantage
of the security and privacy enhancement offered by SGX.
In particular, it only provides limited physical memory for
applications to use SGX. As a result, page faults can be fre-
quently triggered during program execution, especially for
memory-intensive applications with a large memory footprint.
Therefore, it is imperative to look into possible optimization
opportunities to enhance the efficiency of SGX.

To this end, this paper proposes to leverage memory page
preloading techniques to mitigate such a problem. More
specifically, we propose two effective schemes to preload
memory pages before they are accessed. This way, the num-
ber of page faults can be significantly reduced. To demonstrate
the effectiveness of the proposed schemes, we have imple-
mented them in a prototype using LLVM and an untrusted
operating system.

Experimental results on benchmarks from SPEC CPU2017
and a micro-benchmark program show that, on average, these
two mechanisms can achieve 11.4% and 7.0% performance
improvement with a maximum performance improvement of
18.6% and 9.0%, respectively. The two mechanisms are also
evaluated when they are deployed together. The combined
approach can achieve an improvement of 7.1% on some real-
world applications such as SIFT and MSER.

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8153-6/20/12. . . $15.00
https://doi.org/10.1145/3423211.3425673

CCS Concepts: • Software and its engineering → Mem-
ory management; • Security and privacy → Hardware se-
curity implementation.

Keywords: Intel SGX, Memory Preloading, Page Fault, Source
Code Instrument

ACM Reference Format:
Ximing Liu, Wenwen Wang, Lizhi Wang, Xiaoli Gong, Ziyi Zhao,
and Pen-Chung Yew. 2020. Regaining Lost Seconds: Efficient Page
Preloading for SGX Enclaves. In 21st International Middleware Con-
ference (Middleware ’20), December 7–11, 2020, Delft, Netherlands.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3423211.3425673

1 Introduction
Protecting a user application against various security attacks
is critical, especially for privacy-sensitive applications that
store and manage user accounts and passwords. A previous
study shows that there can be as many as 50 attack scenarios
from various aspects of a software system [16]. Furthermore,
an increasingly large number of applications and services
are distributed and deployed on cloud computing platforms,
which poses a greater challenge in preserving the security and
privacy given that cloud environments are shared by a variety
of applications and users.

To address this problem, trusted execution environments
(TEEs) have been proposed by processor vendors [2, 3, 17,
18]. In general, a TEE is an isolated execution environment
that aims to protect the code and data with a strong guarantee
of confidence and integrity. Compared to a regular execution
environment, a TEE offers a smaller exposed area for attacks.
TEEs have been embedded into mainstream processors and
are available via hardware extensions. For example, Intel
Software Guard eXtensions (SGX) [18] have been integrated
into Intel’s processors since 2015.

SGX provides a set of security-oriented instructions that
allow a user application to create a private memory region,
called enclave, which is protected and exclusive to the applica-
tion running inside the enclave. The data in an enclave cannot

https://doi.org/10.1145/3423211.3425673
https://doi.org/10.1145/3423211.3425673
https://doi.org/10.1145/3423211.3425673

Middleware ’20, December 7–11, 2020, Delft, Netherlands Ximing Liu and Wenwen Wang, et al.

be accessed from outside of the enclave, including the privi-
leged operating system and hypervisor, i.e., the threat model
of SGX assumes only the inside of the enclave is trusted.
Given the strong and attractive security guarantees, SGX has
been adopted by many applications, e.g., secure Linux con-
tainers [4] and cryptography algorithms in wolfSSL [43], and
has been widely deployed in commercial cloud platforms,
e.g., Microsoft Azure [25] and IBM Cloud [21].

However, it is not free to take advantage of the security
guarantees provided by SGX. Existing studies have shown
that an application running inside an SGX enclave can be
more than 10X slower than the same application running
outside of SGX [42]. In particular, we observed a performance
degradation of about 46X when porting a simple program with
sequential accesses of 1GB data into an SGX enclave. Further
investigation showed that the main reason for such a high
overhead was due to the limited physical memory provided
by SGX.

More specifically, SGX reserves a limited contiguous phys-
ical memory region for enclaves, called Enclave Page Cache
(EPC), and is managed at the page level. In its current imple-
mentation it has 128MB. Due to the required enclave meta-
data, it is further reduced to around 96MB for user applica-
tions. A virtual memory interface is provided to users, and a
paging mechanism is employed to support applications with
larger memory requirements. Hence, an application with a
memory footprint larger than the size of EPC can result in a
significant number of page faults, and each page fault typi-
cally takes 60,000 ∼ 64,000 clock cycles.

Therefore, optimizing and adapting applications to the lim-
ited EPC resource is crucial to the performance of the appli-
cations. To this end, previous research work has proposed
user-level page management schemes to reduce the page fault
overhead [26, 27]. In those approaches, a user-level software
runtime is added to instrument (manually[26] or automati-
cally with the help of the compiler[27]) the memory accesses,
and swap the EPC pages in and out of the enclave without
the help of OS. Although this approach achieves a substan-
tial performance improvement, it has several fundamental
limitations.

First, these approaches cannot maintain the same security
guarantees ensured by the enclave. This is because they use
a user-level software runtime to bypass the secure SGX in-
structions in order to reduce their high overhead. Those SGX
instructions are typically used by the operating system kernels
to update the EPC pages and exchange information without
losing confidentiality, atomicity and freshness. Second, the
integration of the software runtime will enlarge the trusted
computing base (TCB) that needs to be kept in an enclave.
This poses additional security risks. Third, keeping the run-
time in enclaves all the time further exacerbates the pressure
on EPC.

To overcome the above limitations, this paper proposes to
leverage memory page preloading techniques to mitigate the

performance overhead incurred by page faults in enclaves.
Specifically, two effective page preloading schemes, targeting
different application scenarios, are designed to load memory
pages in advance during the execution of an application in
enclaves. This way, the number of page faults in enclaves can
be reduced.

More specifically, the first scheme works outside of an
enclave at runtime with the support of the operating system.
The page fault history is collected by the OS to predict the
memory access behavior. The predicted pages are then loaded
in advance into the EPC without the knowledge of the appli-
cation. The second scheme assumes the source code of an
application is available. An off-line program profiling is done
to analyze and predict the application’s memory behavior.
The source code is then instrumented with page preloading
instructions by the compiler based on the profiled data. These
two preloading schemes can work individually or collabora-
tively as deemed appropriate.

The page preloading techniques proposed in this paper try
to address the aforementioned limitations in prior approaches.
First, the preloading schemes do not change the work flow
of the page fault handler in enclaves, i.e., the SGX hardware
instructions are still used in the page fault handler. Hence, the
security offered by SGX instructions is preserved. Second,
the TCB of an application is only increased slightly due to the
instrumented code. The binary can remain unchanged using
the first scheme if the source code is not available. Meanwhile,
other than the small amount of instrumented code added in
the second scheme, both schemes introduce minimal pressure
on the limited EPC resource, as the major part of the code
and data structures used in the framework are kept outside of
enclaves.

We have implemented the proposed page preloading schemes
in a prototype in an untrusted Linux operating system with
the help of the LLVM compiler [22]. To evaluate the effective-
ness of the preloading mechanisms, we use micro-benchmark
program, the SPEC CPU2017 benchmark suite and two real-
world applications. Experimental results show that, on aver-
age, the two mechanisms can achieve 11.4% and 9.0% perfor-
mance improvements, respectively, and 7.1% when combined
together. Furthermore, the performance overhead introduced
by the preloading mechanisms is negligible.

In summary, this paper makes the following contributions:

• We propose two page preloading schemes to mitigate
the performance overhead introduced by adopting Intel
SGX.

• We implement a prototype to demonstrate the effec-
tiveness of the proposed schemes. The prototype is im-
plemented based on the SGX driver provided by Intel
and the open source LLVM compiler. We also address
several critical implementation issues.

• We conduct a comprehensive evaluation on the pro-
totype, using applications from the SPEC CPU2017

Middleware ’20, December 7–11, 2020, Delft, Netherlands

User Application
Virtual Address Space

ELRANGE
(> 96MB)

Enclave

Physical Memory

EPC
(96MB)

non-EPC

non-EPC

Page Table, managed
by operating system

ELDU
or
ELDB

EWB

Figure 1. An enclave with a large ELRANGE is supported
through the EPC paging mechanism in the operating system.

benchmark suite and some real-world applications. Ex-
perimental results show that the proposed schemes
achieve promising performance improvement with rea-
sonable runtime overhead.

The rest of this paper is organized as follows. Section 2
provides the background of Intel SGX and motivates this
work. Section 3 describes the design details of the two page
preloading techniques for SGX enclaves. Section 4 presents
the implementation details of the prototype. Section 5 shows
the evaluation results and our insights. Section 6 discusses
related work, and Section 7 concludes the paper.

2 Background and Motivation
This section provides the background of Intel SGX necessary
to understand the rest of the paper. More details on Intel SGX
can be found in [11].

As mentioned earlier, Intel SGX is supported through hard-
ware extensions to existing instruction set architectures. In
order to support various user applications, the SGX hardware,
including EPC, is managed by the operating system, even
if it is not trusted. Thus, the majority of SGX instructions
are designed to be executed in the privileged mode. For in-
stance, to create an enclave, an application needs to invoke
an ioctl() system call, which then executes the privileged
SGX instruction ECREATE to establish the enclave.

It is worth noting that even though there is only limited
physical EPC memory space for user applications, a user ap-
plication is allowed to create an enclave in its virtual address
space that is as large as necessary, which is called the enclave
linear address range (ELRANGE). This is supported by the
EPC paging mechanism in the untrusted operating system as
shown in Figure 1.

The EPC paging mechanism is responsible for swapping
memory pages between EPC and non-EPC physical memory
regionss. Each time the application accesses a memory page
that is not present in the EPC physical memory, a page fault
is triggered. The page fault forces the application to exit the
enclave to preserve the confidentiality of the enclave because
the page fault is to be serviced by the untrusted operating

system. This kind of exit is typically called an asynchronous
enclave exit (AEX).

After that, the page fault is processed by the operating
system. It tries to find an available EPC page first. If no EPC
page is available, the operating system will evict a selected
EPC page to non-EPC physical memory. This is realized by
executing the EWB instruction. The operating system swaps in
the faulted memory page from the non-EPC physical memory
using the ELDB/ELDU instructions, and marks the page as
available in the Page Table. Finally, the application continues
its execution after the ERESUME instruction.

Existing studies show that it takes about 10,000, 44,000,
and 10,000 clock cycles to complete the above-mentioned
three steps: AEX, ELDB/ELDU, and ERESUME, respectively [42]
after the latest security related micro-code update [32]. Hence,
it incurs a total of around 60,000 ∼ 64,000 cycles to handle
an enclave page fault. Compared to handling a page fault
outside of an enclave, which takes around 2,000 cycles [12],
this poses a significant performance overhead, especially for
memory intensive applications with large memory footprints.
Therefore, it is imperative to mitigate such high performance
overhead for better efficiency using SGX enclaves.

3 Preloading Pages for SGX Enclaves
In general, there are three key principles to follow when we
design optimization schemes for SGX enclaves:

• Preserving security. Given that the SGX hardware is
provided for security and privacy purposes, it is obvi-
ous that an optimization scheme should not break the
security guarantees offered by SGX.

• Maintaining a small TCB. The threat model of SGX
precludes all potential untrusted sources from entering
a secure enclave, which include the native operating
system and hypervisor, and thus leaves a sufficiently
small TCB. Therefore, an optimization scheme should
limit the increase of TCB as much as possible.

• Providing good usability. It is impractical to manually
apply an optimization scheme as it will be labor inten-
sive and error prone. Therefore, when integrating an
optimization scheme with SGX, it should be either done
by a compiler [27] or encapsulated in a framework [39].

The page preloading schemes proposed in this paper con-
form to all of these design principles. More specifically, they
are carefully designed to mitigate the performance penalty
introduced by the limited EPC resource in different applica-
tion scenarios of SGX enclaves. The proposed schemes aim
to preload EPC pages before they are actually accessed in the
enclave. This way, the number of page faults in the enclave
can be reduced. Next, we describe the details of the proposed
page preloading schemes.

Middleware ’20, December 7–11, 2020, Delft, Netherlands Ximing Liu and Wenwen Wang, et al.

3.1 DFP: Dynamic Fault History-Based Preloading
The first preloading scheme is called dynamic page fault
history-based preloading scheme, or DFP for short. Inspired
by the observation that the page faults triggered in an enclave
need to be handled by the operating system, it is natural to
capture the history of the faulted pages at runtime in the
operating system. Based on the page accessing history, we
can dynamically predict which EPC pages will be accessed
in the near future and preload those pages that are not in EPC
yet. This prediction and preloading process happens outside
of the enclave, i.e., in the untrusted operating system, without
modifying any enclave source/binary code. Thus, it preserves
the security guarantee of the enclave as required, which also
means it has no effect on the TCB size.

Figure 2 illustrates the performance benefit that can be
gained by DFP. As shown in the figure, there are three page
faults in the original execution, triggered by accesses to Page2,
Page3, and Page4, respectively. With the help of DFP, the page
faults on Page3 and Page4 can be eliminated by preloading
these two pages after the operating system handles the page
fault on Page2. Here, the key is to accurately predict that
Page3 and Page4 will be accessed after Page2 based on the
access history to these pages. However, it is quite challenging
to design an effective and accurate prediction scheme due to
three major reasons.

Firstly, the information we can leverage is very limited.
Compared to traditional data prefetching schemes for cache
memories [6, 23, 30], which collect the entire memory access
history to better extract the access patterns, we only have par-
tial information of the access history here, i.e., faulted pages.
This is mainly because SGX hides majority of memory ac-
cesses operations in enclaves for security and privacy reasons,
and only page fault events can be trapped by the OS. Even for
a page fault event, the bottom 12 bits of the faulted address
are cleared by SGX, which means the history collected is at
the page level.

Secondly, the performance penalty of a misprediction is sig-
nificantly higher. This is because a misprediction will cause
an EPC page to be preloaded into the EPC physical memory
unnecessarily. The EPC page loading procedure is extremely
slow compared to loading a cache line. Based on our measure-
ments, the memory channel of EPC page loading is limited,
i.e. it can only load one page at a time, and the page loading
operation (ELDU/ELDB, which takes about 44,000 cycles)
cannot be preempted when in progress, which make the mis-
predtion penalty even worse.

Lastly, different SGX applications can have completely
different EPC page access patterns. It is extremely difficult
to design a prediction scheme that is general enough to cover
all types of applications [6]. In addition, memory protection
mechanisms such as ORAM [37] may have different access
patterns in different runs of the same program. Therefore,
besides a carefully designed preloading strategy based on

the dynamic analysis of the collected page fault history, a
mechanism to abort incorrect preloading is also integrated
into DFP to minimize the mispredition penalty.

Data prefetching has been well studied for decades, and
it is widely deployed in modern processors for cache line
prefetching [6]. Generally, the memory access patterns are
tracked and then used to predict the data to be accessed. Data
prefetching can be implemented in either hardware or soft-
ware.

To further understand the access patterns at page level,
we instrument the source code to gather the page number
and time stamp of every memory instruction. A table is used
to track the recently accessed pages. The trace data is then
analyzed offline with curve fitting. Based on our observation,
applications also exhibits some access patterns at the page
level. For example, we have analyzed the SPEC CPU2017
benchmark suite, and some of the applications (e.g. bwaves
and lbm) show an evidently sequential access pattern as in
Figure 3 (a) and (c).

In the DFP scheme, we collect the history of faulted pages
in each thread through the operating system, and analyze
the page access patterns to predict future page accesses for
preloading. However, there are applications that have highly
irregular or near random page access patterns (e.g. sjeng
in Figure 3(b)). In order to cut down the misprediction rate
and its incurred penalty, an abort mechanism is placed in DFP
to stop the page preloading if the number of preloaded pages
that are not accessed exceeds a certain threshold. This way,
DFP can achieve a reasonable performance target with an
acceptable penalty due to misprediction.

3.2 SIP: Source-Level Instrumentation-Based
Preloading

The benefit of DFP will be limited or even negative if the page
access patterns of an application are highly unpredictable
and the prediction accuracy is poor. In this case, we pro-
pose the second page-preloading scheme, called source-level
instruction-based preloading (SIP) scheme.

In practice, when software developers are porting their
software to SGX using Intel SGX software development kit
(SDK) [19], it is usually done at the source code level. Hence,
we are provided with an opportunity to perform source-level
analyses and using instrumentation to implement software-
base page preloading. This is opposed to DFP, which is done
at the runtime. SIP is done at the compile time to instrument
the source code and to initiate page preloading. We take ad-
vantage of the approach used in profile-guided optimization
(PGO) schemes [7, 24, 28], which is used to improve the
performance of an application using offline profiling infor-
mation to aid the compiler to perform targeted optimizations.
Irregular access patterns such as those shown in Figure 3(b)
are difficult to capture accurately by DFP at runtime.

Figure 4 uses an example to illustrate the event sequence
in the execution with a page fault (marked as Baseline in the

Middleware ’20, December 7–11, 2020, Delft, Netherlands

Baseline

DFP

User Space
Memory Access

Kernel Space
Exception
Handler

Page1

AEX
(10000cycle)

Page2 Load in
(44000cycle)

ERESUME
(10000cycle)

Page2

AEX
(10000cycle)

Page3 Load in
(44000cycle)

ERESUME
(10000cycle)

Page3

AEX
(10000cycle)

Page4 Load in
(44000cycle)

ERESUME
(10000cycle)

Page4

User Space
Memory
Access

Page1

AEX
(10000cycle)

Page2 Load in
(44000cycle)

ERESUME
(10000cycle)

Page2

Page4 Load in
(44000cycle)

Page3

Page3 Load in
(44000cycle)

Page4

Kernel Space
Exception
Handler

Figure 2. The time sequence of loading pages to EPC. In the Baseline, the time to finish loading all of the pages is 𝑡𝑎𝑐𝑐𝑒𝑠𝑠_𝑝𝑎𝑔𝑒_1−4+
3∗ (𝑡𝐴𝐸𝑋 +𝑡𝐸𝑅𝐸𝑆𝑈𝑀𝐸) +𝑡𝑙𝑜𝑎𝑑_𝑝𝑎𝑔𝑒2+𝑡𝑙𝑜𝑎𝑑_𝑝𝑎𝑔𝑒3+𝑡𝑙𝑜𝑎𝑑_𝑝𝑎𝑔𝑒4. For DFP, the time to finish loading all of the pages is 𝑡𝑎𝑐𝑐𝑒𝑠𝑠_𝑝𝑎𝑔𝑒_1−4+
𝑡𝐴𝐸𝑋 + 𝑡𝑙𝑜𝑎𝑑_𝑝𝑎𝑔𝑒2 + 𝑡𝐸𝑅𝐸𝑆𝑈𝑀𝐸 .

(a) bwaves (b) deepsjeng (c) lbm

Figure 3. Representative memory access patterns of bwaves, deepsjeng and lbm

Baseline

IBP

User Space
Memory Access

Kernel Space
Exception Handler

Page1

AEX
(10000cycle)

Page2 Load in
(44000cycle)

ERESUME
(10000cycle)

Page2

User Space
Memory Access

Page1 Rest of
Page1 Page2WAIT

Kernel Space
Exception Handler

Page2 Load in
(44000cycle)

Notify

Figure 4. Memory access sequences of Baseline and instrumentation-based (SIP) scheme. In Baseline, the time of loading
page2 is 𝑡𝐴𝐸𝑋 (10, 000 𝑐𝑦𝑐𝑙𝑒𝑠) + 𝑡𝑙𝑜𝑎𝑑_𝑝𝑎𝑔𝑒2 (44, 000 𝑐𝑦𝑐𝑙𝑒𝑠) + 𝑡𝐸𝑅𝐸𝑆𝑈𝑀𝐸 (10, 000 𝑐𝑦𝑐𝑙𝑒𝑠). In SIP, the time of loading page2 is
𝑡𝑙𝑜𝑎𝑑_𝑝𝑎𝑔𝑒2 + 𝑡𝑛𝑜𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 . The performance benefit is thus around 𝑡𝐴𝐸𝑋 + 𝑡𝐸𝑅𝐸𝑆𝑈𝑀𝐸 − 𝑡𝑛𝑜𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 .

figure), and the optimized execution sequence using SIP to
avoid the page fault. As shown in the figure, there is a Notify
operation instrumented in the application to inform the kernel
to preload the marked page. With the help of the notification
mechanism, two parts of the overhead incurred in handling a

page fault, i.e., AEX and ERESUME mentioned in Section 2,
can be removed in the optimized execution. In fact, it not
only removes the overhead of an EPC page fault, but also
allows the user application to stay in the enclave during the
page loading. However, if the instrumented memory access

Middleware ’20, December 7–11, 2020, Delft, Netherlands Ximing Liu and Wenwen Wang, et al.

does not trigger a page fault, i.e. it issues a preload request
for an existed page, the instrumented Notify operation will
introduce some overhead and offset some of the benefit of
page preloading.

SIP can be done automatically by the source code analysis
and code instrumentation in the compiler. If a memory access
operation is predicted to trigger a page fault with a high
probability, the compiler will insert a notification operation
to preload the page. The more accurate the instrumentation
is, the more performance gain can be obtained. However, in
practice, it is very challenging to predict accurately whether
a memory access will trigger a page fault or not through
static analyses alone. To improve the prediction accuracy, we
use a PGO (profile-guided optimization) approach to collect
memory traces as mentioned earlier. The compiler can then
use such profiled information to more accurately instrument
the code.

In PGO, the program is first executed with some profiling
input data, and the memory access trace is collected along
with the source line numbers and timestamps. By analyzing
the collected traces, the memory access patterns can be iden-
tified. For the source code with a lot of irregular accesses,
which means it potentially can trigger a lot of page faults at
runtime, a preload notification shown in Figure 4 is instru-
mented before a memory access.

Figure 4 also shows that it is possible to hide the latency
of page preloading if the nofity operation can be issued early
enough to allow the page preloading to overlap with other
code execution. However, as mentioned earlier, page loading
usually takes a long period of time (around 44,000 cycles).
It is extremely difficult to find code regions that are large
enough to overlap with such a long page loading time, i.e. it
is very difficult to find a notification time far advance enough
to offset the 44,000-cycle page loading time. Therefore, our
SIP for irregular accesses is set to be conservative, and the
instrumented code is inserted right before the memory access.
The requested page number is sent to the OS kernel. The
kernel will load the page, and the application will resume
after the page is loaded. In this way, as shown in Figure 4, the
overhead of AEX and ERESUME can be eliminated.

Figure 5 shows an example of how an application is stat-
ically instrumented using SIP. In this example, the access
to array[st] and result_map[key] are found to trigger a lot
of page faults through profiling. They are instrumented with
preloading notifications. In a preloading notification, the sta-
tus of the target page is checked with BIT_MAP_CHECK.
If the requested page is not in EPC, a page loading request
will be issued in page_loadin_function, and the function will
return only after the EPC page loading is completed. When
the application resumes its execution, the required page will
have been loaded into the EPC, and the overhead of context
switching that could have been triggered by a page fault is
eliminated.

int solution(vector<int>& array, vector<int>& case){
int s_left=0;
int s_right=0;
int flags[26];
unorder_map<int, int> result_map;
for(int i=0; i<26;i++)

flags[i] = 0;
for(int i=0; i<n; i++)
{

int tempsum = s_left+s_right*i;
int st = tempsum + case[i];
address = &array[st];
if(BIT_MAP_CHECK == true)

page_loadin_function(address);
int key = array[st];
address = &result_map[key];
if(BIT_MAP_CHECK == true);

page_loadin_function(address);
result_map[key]++;
s_left++;
s_right++;

}
}

Figure 5. Example code instrumented by SIP

It is still challenging to determine where to insert the
preloading notification at compile time even with the help
of profiling information. For example, the access patterns
of result_map in Figure 5 are determined by the content
of array. Therefore, the profiled memory access trace of a
single source line can be mixed with sequential and irregular
behaviors at different periods of the execution. In addition,
the likelihood of page faults is also determined by the status
of EPC, which could be affected by the page management
thread and other enclaves at runtime. Nevertheless, the in-
strumentation points should be carefully selected, so that the
overhead of unnecessary BIT_MAP_CHECK will not offset
the benefit of page preloading. We will discuss this in more
details in Section 4.4.

4 Implementation
To demonstrate the effectiveness of the proposed page preload-
ing schemes, we have implemented a prototype. For the DFP
preloading scheme, we implement it in the Linux operat-
ing system kernel as part of the SGX driver provided by
Intel [20], and a simple linear predictor is also implemented
to demonstrate our idea. For the SIP preloading scheme, we
use LLVM [22] to instrument the source code and to obtain
the profiling data. To further reduce the engineering effort,
we execute the compiled binary code in SGX enclaves using
Graphene-SGX [39], which can run unmodified binaries in
SGX enclaves.

4.1 Page Access Predictors in DFP
There exists a large body of research on data prefetching tech-
niques. But, it is still a challenging problem to find specific
prefetchers that are suitable for a particular application [6].

Middleware ’20, December 7–11, 2020, Delft, Netherlands

Algorithm 1: Multiple Stream Predictor Algorithm
Input: The page number npn, on which a page access

fault event is triggered;
The ID of the process which triggers the page fault
event.
Output: list_to_load. The list of pages should be

loaded based on the prediction.

1 set_empty(𝑙𝑖𝑠𝑡_𝑡𝑜_𝑙𝑜𝑎𝑑);
2 𝑠𝑡𝑟𝑒𝑎𝑚_𝑙𝑖𝑠𝑡 = find_stream_list(𝐼𝐷);
3 foreach stream entry 𝑛 in 𝑠𝑡𝑟𝑒𝑎𝑚_𝑙𝑖𝑠𝑡 do
4 if 𝑛𝑝𝑛 is sequential to 𝑛->stpn then
5 𝑛->stpn = 𝑛𝑝𝑛;
6 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = get_direction(𝑛𝑝𝑛, 𝑛->stpn);
7 move_to_head(𝑛, 𝑠𝑡𝑟𝑒𝑎𝑚_𝑙𝑖𝑠𝑡);
8 add_to_list(𝑙𝑖𝑠𝑡_𝑡𝑜_𝑙𝑜𝑎𝑑 , 𝑛𝑝𝑛,

𝐿𝑂𝐴𝐷𝐿𝐸𝑁𝐺𝑇𝐻 , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛);

9 if 𝑛 is the last enty of 𝑠𝑡𝑟𝑒𝑎𝑚_𝑙𝑖𝑠𝑡 then
10 𝑛->stpn = 𝑛𝑝𝑛;
11 move_to_head(𝑛, 𝑠𝑡𝑟𝑒𝑎𝑚_𝑙𝑖𝑠𝑡);

12 return 𝑙𝑖𝑠𝑡_𝑡𝑜_𝑙𝑜𝑎𝑑;

The data prefetchers integrated in the modern processors,
such as Intel Xeon, use more conservative schemes such as
next-line and stride prefetchers [6, 41].

Similarly, based on the mechanism of DFP, many complex
strategies can be implemented that include heuristic schemes
or even machine learning based schemes [15]. Without losing
generality and simplicity, a multiple-stream predictor is im-
plemented in DFP. It is similar to the read-ahead mechanism
in Linux virtual file system [14]. With the help this predictor,
the sequential streams of the recently triggered page faults
can be recognized to predict the following group of pages to
be accessed.

As shown in Algorithm 1, the stream of page faults is
maintained through a linked list with a fixed length, called
stream_list. It is managed using a least recently used (LRU)
scheme. In each entry of stream_list, the page number of the
most recently triggered page fault in the stream, called stpn
(i.e. stream tail page number), is recorded.

Anytime a new page fault is triggered, its page number,
called npn (i.e. new page number), is extracted by the OS.
Our algorithm will go over stream_list to check if npn is the
page next to any stpn on the list. If there is such an entry in
stream_list, the field of stpn is updated to npn, and the entry is
moved to the head of the list. At the same time, the following
LOADLENGTH pages are added to the list_to_load, which
will be loaded into EPC asynchronously after the prediction
procedure. The LOADLENGTH is called preload distance,
and is the number of pages to be preloaded into EPC. Other-
wise, we will replace the last stpn on stream_list (i.e. the least

recently used entry on the list) with npn, and move it to the
head of the list.

For example, assume page(1) is the stpn of an entry on the
list, and page(2) is the page number of the newly-triggered
page fault that follows page(1), i.e. npn. This multiple-stream
predictor will detect the pattern and, in addition to loading
page(2), it will preload page(3), page(4)... and page(npn+
LOADLENGTH-1) into EPC asynchronously. Let us assume
LOADLENGTH is 8, i.e. it will preload 8 pages into EPC at a
time. If a page fault on page(5) occurs during such a preload-
ing process, the page fault handler will check if page(5) has
already been preloaded into EPC. If it is not in EPC yet, and
assume the preloading only reaches page(3). All the remain-
ing pages yet to be preloaded, i.e. page(4) through page(8)
will be aborted, and page(5) will be considered as the start of
a new stream.

There are two design parameters in the current predictor
of DFP, which may affect the effectiveness of DFP and can
be tuned during the implementation. One is the length of
stream_list. The other is the number of pages to be preloaded
each time, i.e. LOADLENGTH. Our current implementation
uses empirical values for these two parameters. More details
are presented in Section 5.

4.2 Implementation of Abort Mechanism in DFP
The DFP preloading process needs to be aborted if too many
preloaded pages are not accessed by the application, i.e.
there is a mis-prediction. To implement this, a list called
PreloadedPageList is maintained to track all preloaded
pages. There is an access bit for each page on the list. The bit
is set to 0 when a new page is loaded, and is set to 1 if the
page is accessed.

In the current implementation of the SGX driver, similar
to the CLOCK replacement algorithm [8], there is a service
thread periodically checking and cleaning the access bits in
the page table entries to select the best candidate page to
evict, if necessary. We piggyback the service thread to update
our PreloadedPageList during the scan. We collect the
number of preloaded pages that are marked as accessed in the
page table. This number, called AccPreloadCounter, shows
the number of pages that are correctly preloaded. Additionally,
there is another counter, called PreloadCounter, to record the
total number of pages preloaded that includes both correctly
and incorrectly preloaded pages.

The page preloading thread compares AccPreloadCounter
and PreloadCounter periodically. If the AccPreloadCounter
is smaller than PreloadCounter by a preset threshold value,
which means it is preloading too many unused pages, the
preloading thread stops itself to avoid excessive overhead.
The threshold is an empirical value that can be tuned. In
the current implementation, the preloading thread stops when
𝐴𝑐𝑐𝑃𝑟𝑒𝑙𝑜𝑎𝑑𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 200000 < 𝑃𝑟𝑒𝑙𝑜𝑎𝑑𝐶𝑜𝑢𝑛𝑡𝑒𝑟/2. This em-
pirical formula is obtained via curve fitting and manual tun-
ing.

Middleware ’20, December 7–11, 2020, Delft, Netherlands Ximing Liu and Wenwen Wang, et al.

4.3 Page Preloading Mechanism in SIP
As mentioned earlier, it is the instrumented code in SIP that
sends EPC page preloading requests to the operating system
at runtime. The loading of the EPC page is performed by the
operating system. More specifically, a Linux kernel thread is
created to perform the page preloading. We use a set of mem-
ory locations shared between the application in the enclave
and the operating system to pass these messages.

It is worth noting that, although the data in an SGX enclave
cannot be accessed from the outside of the enclave, the code
in the enclave can access non-EPC memory regions, as this is
necessary to pass the arguments to the applications running in
the enclave. In our implementation, the shared memory loca-
tions are allocated in the user address space of the application,
and the addresses of the locations are passed to the operating
system through a system call we have implemented.

To mitigate the overhead introduced by imprecise static
analysis of which memory access will trigger a page fault,
we import the presence status of each enclave page from the
operating system to the enclave. Each time, before the instru-
mented code sends a preloading request, the presence status
of the corresponding page is first checked to see whether it
is already in the EPC or not. If it is already in the EPC, the
enclave continues the execution without preloading it.

The presence status is implemented as a bitmap array, i.e.,
each enclave virtual page corresponds to one bit in the array,
and there is one bitmap for each enclave shared between the
enclave and the operating system. The bitmap array is created
when the enclave is established, and initialized when EPC
pages are claimed by the enclave. During the execution of
the application in the enclave, the bitmap array is updated by
the operating system only when an EPC page is evicted or
loaded back from the non-EPC physical memory. Note that,
the presence status of the pages is not considered as part of
the protected information in the enclave since it is always
available in the untrusted operating system.

4.4 Instrumentation for Page Preloading in SIP
To mitigate the performance overhead incurred by SIP instru-
mentation, we selectively instrument memory access instruc-
tions that are very likely to trigger EPC page faults during
the profiling runs. To this end, we also utilize Algorithm 1 to
analyze the information gathered during the profiling runs,
and classify each memory access based on the characteristics
of the page it accessed.

• Class 1. The page is on stream_list, i.e. the page can
be found in EPC with a high probability.

• Class 2. The page is not on stream_list, but follows one
of the entry in stream_list. This is a situation similar to
those described in DFP (Section 4.1).

• Class 3. The page is neither on stream_list nor follow-
ing any entry on stream_list. This implies that it is an
irregular access, which may trigger an EPC page fault.

Category Benchmark
Small Work-
ing Set

cactuBSSN, imagick, leela, nab, ex-
change2

Large Work-
ing Set with
irregular
access

roms, mcf, deepsjeng, omnetpp, xz

Large Work-
ing Set with
regular access

bwaves, lbm, wrf, microbenchmark

Table 1. Classification of Benchmarks

Obviously, it is unnecessary to instrument instructions in
Class 1 as it is already in EPC. As the multistream predic-
tor in DFP may capture sequential accesses more effectively
than SIP with the help of runtime information, we can leave
instructions in Class 2 to DFP, if both SIP and DFP schemes
are used. As a result, we only need to perform the SIP instru-
mentation for instructions in Class 3. To handle the case in
which memory accesses by an instruction can be classified
into more than one class, we make the instrumentation de-
cision based on the majority of the memory accesses issued
by the instruction, which is determined by an empirical ratio
among its different classes (see Section 5 for more details).

5 Experimental Results
In this section, we evaluate the performance improvement that
can be achieved by the proposed page-preloading schemes.
Our evaluation includes a selection of benchmarks from the
SPEC CPU2017 suite [10]. We also use a microbenchmark
that sequentially accesses an 1GB memory region through a
loop to verify the correctness, and to provide some baseline
performance for our implementation. Table 1 shows some
detailed characteristics of the benchmarks. We run the appli-
cations with Graphene-SGX and vanilla SGX drivers, and
profile their memory access behaviors. We mainly focus on
the performance improvement of benchmarks with large work-
ing sets that exceed the size of EPC, i.e. the benchmarks that
spend a significant amount of time in page fault handling.

In addition, we also evaluate two real-world applications,
Scale Invariant Feature Transform (SIFT) and Maximally
Stable Extremal Regions (MSER), both of which are image
processing applications from the San Diego Vision Bench-
mark Suite [40]. SIFT extracts features from images that are
robust to scaling, rotation and noise. It is an important tool
in diagnosis and subsequent treatment of eye diseases, and
has been widely used in medical imaging analysis [33, 36].
MSER is an application used to detect blobs in images. It is
widely used in medical image segmentation, visual surveil-
lance, traffic analysis and vehicular tracking [35, 45].

Middleware ’20, December 7–11, 2020, Delft, Netherlands

Figure 6. Execution time of two benchmarks, i.e., lbm and
bwaves, using DFP with different lengths of the linked list
used to save the addresses of faulted pages.

The experimental platform is an HP-Z238 workstation,
equipped with an Octa-Core Intel Xeon E3-1240v5 CPU run-
ning at 3.5GHz with 8MB last-level cache, with the latest
CPU firmware of Release-V20191115. The main memory
is 32GB and the operating system is Ubuntu 18.04 with the
Linux-4.4.0-141. The version of the SGX driver is 2.6, which
was the latest version when we conducted these experiments.
The source code is compiled with the LLVM compiler, and
the binary code is executed in SGX enclaves using Graphene-
SGX [39] V1.1. To more accurately measure the performance
of an application, we use the execution time of an empty
binary running on Graphene-SGX as the baseline, and sub-
tract it from the total execution time in the final analysis.
The experimental platform is used exclusively for the eval-
uation. Also, to reduce the influence of random factors on
performance, each application is executed 5 times and their
arithmetic means are used.

5.1 Performance Study of DFP
As mentioned earlier, there are two design parameters in DFP.
One is the length of the linked list used to record the streams
of faulted pages. Figure 6 shows the performance results with
different lengths for two benchmarks, lbm and bwaves, which
have large memory footprints with mostly regular page access
patterns. As shown in the figure, although the two benchmarks
achieve the shortest execution time at different lengths, the
combined execution time of them is shortest when the length
is around 30. Therefore, our current implementation of DFP
uses 30 as the default length for the linked list.

Another parameter is the number of pages preloaded at
each preloading. Figure 7 shows the normalized execution
time of the 7 benchmarks that have large memory footprints
with both regular and irregular access patterns. The figure
shows the performance when different numbers of pages are
preloaded at each page preloading. As shown in the figure,
when the number exceeds 4, a substantial performance loss

can be observed for some benchmarks, such as mcf and deep-
sjeng. As a result, we set the preloading pages to 4 EPC pages
each time in DFP.

Figure 8 shows the performance improvements achieved
by DFP. The execution time of each benchmark is normalized
to its original execution time without using DFP. As shown
in the figure, DFP achieves performance improvements for
every large memory-footprint benchmark with regular access
patterns that includes bwaves, lbm, and wrf. Especially, the
performance improvement of the microbenchmark can be as
high as 18.6%, while lbm is improved by 13.3%. However,
for some other benchmarks, such as mcf, deepsjeng, roms and
omnetpp, DFP can introduce additional performance over-
head. Further investigation shows that this is mainly caused
by the mispredictions. This again demonstrates that it is quite
challenging to design a general preloading scheme to cover
different types of applications. On average, DFP can achieve
11.4% performance improvement for the evaluated regular
benchmarks.

To reduce the performance overhead incurred by mispre-
dictions in DFP, we further introduce an abort mechanism
for DFP, denoted as DFP-stop. In particular, we abort a page
preloading when the number of its mispredictions exceeds
a threshold. The performance improvement can be seen in
Figure 8. As shown in the figure, DFP-stop helps to mitigate
the performance penalty introduced by mispredictions even
though the performance improvement is not as significant
as expected. There is some noticeable improvement. For ex-
ample, the overhead of deepsjeng and roms decrease from
34% and 42% to 0% and 0.1%, respectively. On average, the
performance overhead decreases from 38.52% to 2.82%.

Note that, as described in Section 4.1, there is already
an abort mechanism within a stream of page preloading, i.e.
within the range of LOADLENGTH. The abort mechanism
described here is only used as a "safety valve" to prevent
misprediction from causing too much penalty in some ex-
treme cases. The overhead it incurs is negligible. The abort
mechanism is integrated into the DFP and enabled by default.

5.2 Performance Study of SIP
In Section 4.4, we mention that each memory instruction
can issue many memory accesses of different classes. The
percentage of irregular memory accesses (i.e. the class 3
accesses) is a useful parameter for SIP. In our implementation,
we set a threshold to determine if the instruction should be
instrumented for SIP or not. Every memory instruction with a
percentage of irregular accesses above the set threshold will
be instrumented with a preloading notification.

If this threshold is set too low, which means we are instru-
menting in an aggressive manner, the overhead incurred by
the instrumented code may exceed the expected performance
gain. On the other hand, if this threshold is set too high, i.e.
we only select instructions with a large number of irregular
accesses, we may miss some potential opportunities that can

Middleware ’20, December 7–11, 2020, Delft, Netherlands Ximing Liu and Wenwen Wang, et al.

(a) bwaves (b) wrf (c) lbm (d) microbenchmark

(e) mcf (f) deepsjeng (g) roms (h) xz (i) omnetpp

Figure 7. Normalized execution time when preloading different numbers of EPC pages each time in DFP. The baseline is the
original execution without preloading.

Figure 8. Performance improvement achieved by DFP. The
execution time is normalized to the original execution time
without DFP.

improve overall performance. In order to find a sweet spot,
we conduct a series of experiments on sjeng using different
threshold values, and the results are shown in Figure 9. It
can be seen that the application has the best performance
at around 5%. We also test it on mcf and get a very similar
result. So, the misprediction threshold is set at 5% in all of
our experiments.

Due to the limitation of our current implementation, only
C/C++ applications are supported. Therefore, bwaves, roms
and wrf (written in Fortran) are not included here. The bench-
mark omnetpp is also omitted because our instrument tool
cannot fully support it. We also included mcf from SPEC
CPU 2006 to expand the benchmark applications (denoted as
mcf.2006). We present the performance results in Figure 10.

Figure 9. Running time of deepsjeng with different irregular
access ratio. The y-axis is the execution time of instrumented
sjeng with train input set, while the x-axis is the instrumenta-
tion threshold of the irregular access ratio.

To evaluate a more realistic scenario in practice, we use dif-
ferent input data sets for profiling and performance-collecting
runs. For benchmarks from SPEC CPU 2017, the training
data is used for profiling and the reference data is used for
performance-collecting runs. For SIFT and Another vision
based app, we use one sample image for profiling and other
images for performance-collecting runs.

As shown in Figure 10, SIP achieves 9.0% performance
improvement for deepsjeng and 4.9% for mcf.2006. From
profiling, we learn that these two applications contain a large
number of irregular accesses, and the page faults triggered
by the applications can be reduced by more than 70% after
using SIP. However, the profiled data of lbm and microbench-
mark shows that they have very few irregular accesses, and
SIP cannot find proper locations to do the instrumentation.
Therefore, the performance of those three applications cannot
be improved by SIP, as reflected in the experimental results.

Middleware ’20, December 7–11, 2020, Delft, Netherlands

Figure 10. Performance improvement achieved by SIP. The
execution time is normalized to the original execution time
without SIP.

It is also worth noting that we find that even if there is a
lot of irregular accesses during the profiling runs, there could
still be no performance gain using SIP, such as mcf. After
a more thorough study on the profiled data, we find that it
contains many memory-intensive instructions whose memory
behavior exhibits a large number of both Class 1 accesses (i.e.
EPC page hits) and Class 3 accesses (i.e. irregular accesses),
but with very few Class 2 accesses (i.e. sequential stream
accesses), as defined in Section 4.4.

If such instructions are instrumented with preloading notifi-
cations, a large number of page faults can be avoided for those
Class 3 accesses, but it will incur significant overheads for
those Class 1 accesses due to the instrumented code. If those
instructions are ignored by the SIP, the page faults triggered
will cause heavy runtime overheads because they lack Class
2 accesses, i.e. DFP cannot help those instructions because of
the lack of Class 2 accesses.

We find mcf happens to be these kind of applications. The
benefit gained from the instrumentation via SIP for Class 3 ac-
cesses is offset by the overheads incurred on Class 1 accesses.
They offset each other, and the end result is a wash in the
performance gain. This presents an interesting dilemma on
the use of SIP and DFP to mitigate the performance overhead
incurred by page faults in SGX enclaves.

It is interesting to note that even the functionality of mcf
and mcf.2006 is supposed to be the same, their preloading
schemes are quite different because of different ratios in the
types of memory accesses in their implementation. It can
be further optimized with more careful instrumentation and
fine tuning. It is another proof that coming up with a general
preloading scheme is quite challenging.

5.3 Results of Two Real-World Applications
To evaluate the two real-world image processing applications,
i.e., SIFT and MSER, we use the images from the MIT-Adobe
FiveK Dataset [1] as the input. We obtain the profiling data of

Figure 11. Normalized execution time of SIFT and MSER
using DFP and SIP, respectively. The performance baseline
is the original execution of MSER and SIFT without using
preloading.

these two applications using one sample image. It shows that
both of these two applications have a large memory footprint.
The difference between them is that SIFT has more sequen-
tial accesses, while MSER has more irregular accesses. This
makes SIFT a good candidate for the DFP preloading scheme
and MSER a good candidate for the SIP preloading scheme.

Figure 11 shows the normalized execution time of these
two applications using the original execution time without
preloading as the baseline. As shown in the figure, with the
help of our page preloading techniques, SIFT and MSER can
obtain 9.5% and 3.0% performance improvements, respec-
tively. This demonstrates the proposed preloading schemes
are beneficial to real-world applications as well.

5.4 Combining SIP and DFP
Next, we study the performance improvement that can be
achieved by combining SIP and DFP, i.e. a hybrid scheme.
It is clear that SIP and DFP can improve different parts of
an application with different memory behaviors, so that the
performance can be further improved if they can collaborate
with minimal interference.

Figure 12 shows the normalized execution time of SIP, DFP,
and the hybrid scheme. We have omitted the applications
that are not written in C/C++ due to the limitation of our
implementation as mentioned earlier. It is worth noting that,
based on our profiling and analysis, our benchmark programs
exhibits memory behavior either mostly sequential accesses
(i.e. Class 2 accesses that are amenable to DFP) or irregular
accesses (i.e. Class 3 accesses that are amenable to SIP), but
very few benchmarks with a substantial number of accesses
in both classes. This means that they can only be improved
either by SIP or DFP, but not much by the hybrid scheme.
Our experimental results seem to bear this out.

As shown in Figure 12, by combining these two page
preloading schemes, the performance improvement achieved

Middleware ’20, December 7–11, 2020, Delft, Netherlands Ximing Liu and Wenwen Wang, et al.

Figure 12. Normalized execution time of SIP, DFP, and the
combination of them. The baseline is the original execution
time without using preloading.

Figure 13. Normalized execution time of mixed-blood

is mostly close to the better of the two schemes, but not sub-
stantially more. Nonetheless, it shows that it is feasible to
combine these two preloading schemes without hurting each
other. It is also worth noting that in the worst case, such as
mcf mentioned earlier, the average overhead is about 4.2%.

To validate our arguments, we synthesize an application
with a similar number of sequential accesses (i.e. Class 2
accesses) and irregular accesses (i.e. Class 3 accesses). In this
synthesized program, we sequentially scan an image and then
invoke MSER for blobs detection. This application is called
mixed-blood in Figure 13. We did the same experiments on
mixed-blood and the results are shown in Figure 13. From
the figure, we can see that SIP alone gets 1.6% improvement
and DFP alone gets 6.0% improvement, while the perfor-
mance is further improved by the hybrid scheme (marked as
"SIP+DFP") with 7.1% improvement.

5.5 TCB Size Study
Finally, we quantitatively evaluate the increased size of en-
clave TCB in SIP. Note that the TCB does not increase in DFP.
The size increase of TCB for SIP can be contributed to two
factors: (1) the code in the preloading notification; and (2) the
number of the invoked points for notification. The preloading
notification function is implemented in C with 23 lines of
code. We measure the number of invoked points inserted after
the SIP instrumentation and show the data in Table 2. This
demonstrates that SIP is able to maintain a small TCB size.

Benchmark Instrumentation Points
mcf.2006 114

mcf 99
xz 46

deepsjeng 35
lbm 0

MSER 54
SIFT 0

microbenchmark 0
Table 2. The number of instrumentation points in different
benchmarks

5.6 Discussion
Compared to the memory footprint of the modern software,
the EPC size is relatively small. Even though an enclave can
be configured to fit the memory requirement of an application,
EPC over-subscription will lead to thrashing and significant
performance degradation. Sharing EPC among multiple pro-
cesses or multiple virtual machines[13] is supported on Intel
processors, but the total EPC size remains the same and each
enclave will receive a smaller portion. As each enclave can
handle its preloading independently, our proposed schemes
(i.e. SIP and DFP) will work for each enclave. However,
EPC contention becomes a serious issue. Such an issue is
similar to the sharing of the last-level cache (LLC) or the
main memory. Much work has been dedicated to address the
"fairness" and the "performance" concerns of such resource
sharing [9, 31, 44], which is beyond the scope of this paper.

Even though page preloading can increase the bandwidth
utilization between the EPC and the untrusted memory, the
memory latency can be hidden if a page is correctly preloaded
before its access. However, the performance improvement is
limited by the software characteristics. For memory-bound
applications, i.e. applications spending less time doing com-
puting, it is difficult to improve the performance by preload-
ing because there is not enough computation time to hide (i.e.
overlap with) its memory latency.

The limitation on the hardware also makes the preloading
quite challenging. Because of the hardware constraints and
the scalability limitation of the Linux page management [29],

Middleware ’20, December 7–11, 2020, Delft, Netherlands

the page load-in process is exclusive and non-preemptible.
In addition, the page load-in time is very long (i.e. 44,000
cycles). Therefore, any page load-in operation issued between
two page faults with an interval less than the loading time will
delay regular memory accesses. In this situation, even if the
prediction is correct, the performance benefit is still limited.

Some recent work has been trying to improve the page-
loading process, e.g. Eleos[26] and CoSMIX[27]. They show
that the performance can be improved with effective software-
based memory management at runtime. Our proposed page-
preloading schemes can be integrated with those page-loading
processes to deliver an even higher performance.

6 Related Work
A large amount of research has been conducted focusing on
the limited resource and heavy overhead of world switch in
SGX, which include enlarging the size of EPC and reducing
the overhead to handle EPC page faults. For example, Mor-
phable Counters[34] and VAULT [38] have been proposed
to provide new data structures and algorithms for integrity
verification of EPC, so that the EPC size can be enlarged
theoretically. It can be seen that the application performance
can be significantly improved with a larger EPC. However, it
may take a long time for the processor vendors to integrate
these new technologies into the product. The overhead of
EPC page swap is still very heavy when the footprint of appli-
cations exceed the limited EPC size. The preloading scheme
we proposed can be considered as a latency hiding scheme for
the memory hierarchy between EPC and untrusted memory
space.

To mitigate the overhead of world switch, SCONE [5] and
Hotcalls [42] have been proposed with new SGX interface
to reduce the overhead of specific operations in SGX such
as entry-calls, out-calls. Similar to the method we used in
SIP, delegating mechanism in untrusted world is employed
to avoid the world switch. However, these techniques are not
aimed at reducing the performance overhead introduced by
page faults in enclaves, which are the major issues targeted in
this paper.

Eleos [26] and CoSMIX[27] have addressed the similar
problem to our research. To mitigate the heavy overhead of
page fault, a software page management framework has been
implemented to manage the presence status of the pages in
EPC, and exchange the page content with untrusted mem-
ory space. Even though the same encryption algorithm have
been employed, it is difficult to maintain the same security
guarantee with the hardware implemented instructions, i.e.
EWB and ELDU/ELDB, especially at the micro-architecture
level. On the contrary, in our approach, we exactly follow the
page management procedure to take advantage the security
feature offered by SGX. Another concern when implementing
user-level page management is that every memory access in
the enclave should be instrumented to check the status of the

corresponding page. A cache oriented optimization and soft-
ware TLB have been implemented to minimize the runtime
cost. However, it is unnecessary in our solution since only
the sensitive memory access is instrumented in SIP while the
application is not affected by DFP. Despite the code space
consumed by the runtime software, maintaining the software
implemented page table in the enclave still cause additional
pressure on limited EPC size, since the address space of an
enclave can be as large as the conventional 64-bit application
software. Unlike them, our solution cause negligible overhead
on EPC since only some checking and notification code has
been instrumented to selected positions in SIP.

7 Conclusion
Intel SGX offers a strong guarantee for security and privacy.
However, user applications have to pay a significant perfor-
mance overhead to take advantage of SGX. One major reason
is that the secure physical memory provided by SGX is lim-
ited. This can lead to a large number of page faults, especially
for memory-intensive applications with large memory foot-
prints. To address this issue, this paper proposes to leverage
page preloading techniques to mitigate the performance over-
head introduced by the page faults. With the help of these two
mechanisms, the number of page faults can be reduced sig-
nificantly. To demonstrate the effectiveness of the proposed
preloading mechanisms, we have implemented them on a
prototype. We then evaluate this prototype using benchmarks
from the SPEC CPU2017 benchmark suite, some real-world
applications, and a micro-benchmark program. Experimental
results show that, on average, the proposed two preloading
mechanisms can achieve on average of 11.4% and 7.0% per-
formance improvement, respectively. The two mechanisms
can also be combined together to achieve an improvement of
7.1% on real applications.

The source code of our work is publicly available at
https://github.com/NKU-EmbeddedSystem/
preloading-for-sgx

Acknowledgments
This work is partially supported by the National Natural Sci-
ence Foundation of China (61702286), the National Key Re-
search and Development Program of China (2018YFB1003405),
the Natural Science Foundation of Tianjin, China (18JCY-
BJC15600), the CERNET Innovation Project (NGII20190514),
and a faculty startup funding of the University of Georgia.

References
[1] 2017. MIT-Adobe fivek datasett. (2017).

http://data.csail.mit.edu/graphics/fivek/.
[2] AMD. 2020. AMD GuardMI Technology. https://www.amd.com/

en/technologies/guardmi.
[3] ARM. 2020. Introducing Arm TrustZone. https://

developer.arm.com/ip-products/security-ip/trustzone.

https://www.amd.com/en/technologies/guardmi
https://www.amd.com/en/technologies/guardmi
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

Middleware ’20, December 7–11, 2020, Delft, Netherlands Ximing Liu and Wenwen Wang, et al.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Savan-
nah, GA, USA) (OSDI’16). USENIX Association, Berkeley, CA, USA,
689–703.

[5] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 689–703.

[6] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. 2020. Classifying Memory Access Patterns for Prefetching.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
513–526.

[7] Thomas Ball and James R Larus. 1994. Optimally profiling and tracing
programs. ACM Transactions on Programming Languages and Systems
(TOPLAS) 16, 4 (1994), 1319–1360.

[8] Laszlo A. Belady. 1966. A study of replacement algorithms for a
virtual-storage computer. IBM Systems journal 5, 2 (1966), 78–101.

[9] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang,
and Yingwei Luo. 2015. Optimal cache partition-sharing. In 2015 44th
International Conference on Parallel Processing. IEEE, 749–758.

[10] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018.
SPEC CPU2017: Next-generation compute benchmark. In Companion
of the 2018 ACM/SPEC International Conference on Performance
Engineering. 41–42.

[11] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive 2016, 086 (2016), 1–118.

[12] Damon. 2019. Cost of a page fault trap. (2019). Accessed 19 Apirl
2020. https://stackoverflow.com/questions/1022
3690/cost-of-a-page-fault-trap.

[13] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schi-
avoni, Pascal Felber, and Daniel Hagimont. 2019. Everything You
Should Know About Intel SGX Performance on Virtualized Systems.
Proc. ACM Meas. Anal. Comput. Syst. 3, 1, Article 5 (March 2019),
21 pages.

[14] WU Fengguang, XI Hongsheng, and XU Chenfeng. 2008. On the
design of a new linux readahead framework. ACM SIGOPS Operating
Systems Review 42, 5 (2008), 75–84.

[15] Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant Ayers, Heiner
Litz, Jichuan Chang, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. 2018. Learning memory access patterns. arXiv preprint
arXiv:1803.02329 (2018).

[16] Greg Hoglund and Gary McGraw. 2004. Exploiting Software: How to
Break Code. Pearson Higher Education.

[17] IBM. 2020. IBM Secure Service Container. https://www.ibm.com/us-
en/marketplace/secure-service-container.

[18] Intel. 2020. Intel Software Guard Extensions. https://
software.intel.com/en-us/sgx.

[19] Intel. 2020. Intel Software Guard Extensions SDK. https:
//software.intel.com/en-us/sgx/sdk.

[20] Intel. 2020. Intel(R) Software Guard Extensions for Linux* OS. https:
//github.com/intel/linux-sgx-driver.

[21] Pratheek Karnati. 2020. Data-in-use protection on IBM Cloud using
Intel SGX. https://www.ibm.com/cloud/blog/data-use-protection-
ibm-cloud-using-intel-sgx.

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings

of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (Palo Alto, California)
(CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.

[23] Hui Lei and Dan Duchamp. 1997. An analytical approach to file
prefetching. In USENIX Annual Technical Conference. 275–288.

[24] Roy Levin, Ilan Newman, and Gadi Haber. 2008. Complementing
missing and inaccurate profiling using a minimum cost circulation al-
gorithm. In International Conference on High-Performance Embedded
Architectures and Compilers. Springer, 291–304.

[25] Microsoft. 2020. Protection by design: Intel SGX and Azure
Confidential Computing. https://azure.microsoft.com/en-
us/resources/videos/ignite-2018-protection-by-design-intel-
sgx-and-azure-confidential-computing.

[26] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
2017. Eleos: ExitLess OS services for SGX enclaves. In Proceedings
of the Twelfth European Conference on Computer Systems. ACM, 238–
253.

[27] Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark Silber-
stein. 2019. CoSMIX: A Compiler-based System for Secure Memory
Instrumentation and Execution in Enclaves. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). USENIX Association, Ren-
ton, WA, 555–570.

[28] Guilherme Ottoni. 2018. HHVM JIT: A Profile-guided, Region-based
Compiler for PHP and Hack. In ACM SIGPLAN Notices, Vol. 53. ACM,
151–165.

[29] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Mano-
lis Marazakis, and Angelos Bilas. 2020. Optimizing Memory-mapped
I/O for Fast Storage Devices. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association, 813–827.

[30] David K Poulsen and Pen-Chung Yew. 1994. Data prefetching and data
forwarding in shared memory multiprocessors. In 1994 Internatonal
Conference on Parallel Processing Vol. 2, Vol. 2. IEEE, 280–280.

[31] Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache
partitioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 423–432.

[32] RedHat. 2019. CVE-2019-0117. (2019). Accessed 10 Sept 2020.
https://access.redhat.com/security/cve/CVE-2019-0117.

[33] Yang Sa. 2015. Medical Image Registration Algorithm Based on Com-
pressive Sensing and Scale-Invariant Feature Transform. In 2015 8th
International Conference on Intelligent Computation Technology and
Automation (ICICTA). IEEE, 547–551.

[34] Gururaj Saileshwar, Prashant Nair, Prakash Ramrakhyani, Wendy El-
sasser, Jose Joao, and Moinuddin Qureshi. 2018. Morphable counters:
Enabling compact integrity trees for low-overhead secure memories. In
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 416–427.

[35] Ehab Salahat, Hani Saleh, Andrzej S Sluzek, Baker Mohammad, Mah-
moud Al-Qutayri, and Mohammad Ismail. 2015. Novel MSER-guided
street extraction from satellite images. In 2015 IEEE International Geo-
science and Remote Sensing Symposium (IGARSS). IEEE, 1032–1035.

[36] Luis A Salazar-Licea, C Mendoza, MA Aceves, JC Pedraza, and Al-
berto Pastrana-Palma. 2014. Automatic segmentation of mammograms
using a Scale-Invariant Feature Transform and K-means clustering algo-
rithm. In 2014 11th International Conference on Electrical Engineering,
Computing Science and Automatic Control (CCE). IEEE, 1–6.

[37] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. [n.d.]. Zero-
Trace : Oblivious Memory Primitives from Intel SGX. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018.

[38] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018.
VAULT: Reducing paging overheads in SGX with efficient integrity
verification structures. In ACM SIGPLAN Notices, Vol. 53. ACM, 665–
678.

https://www.ibm.com/us-en/marketplace/secure-service-container
https://www.ibm.com/us-en/marketplace/secure-service-container
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://azure.microsoft.com/en-us/resources/videos/ignite-2018-protection-by-design-intel-sgx-and-azure-confidential-computing
https://azure.microsoft.com/en-us/resources/videos/ignite-2018-protection-by-design-intel-sgx-and-azure-confidential-computing
https://azure.microsoft.com/en-us/resources/videos/ignite-2018-protection-by-design-intel-sgx-and-azure-confidential-computing

Middleware ’20, December 7–11, 2020, Delft, Netherlands

[39] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-
SGX: A Practical Library OS for Unmodified Applications on SGX.
In Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’17). 645–658.

[40] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta,
Christopher Louie, Saturnino Garcia, Serge Belongie, and Michael Bed-
ford Taylor. 2009. SD-VBS: The San Diego vision benchmark suite.
In 2009 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 55–64.

[41] Krishnaswamy Viswanathan. 2014. Disclosure of Hardware Prefetcher
Control on Some Intel® Processors. https://software.intel.com/
content/www/us/en/develop/articles/disclosure-of-hw-
prefetcher-control-on-some-intel-processors.html.

[42] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining lost
cycles with HotCalls: A fast interface for SGX secure enclaves. In ACM
SIGARCH Computer Architecture News, Vol. 45. ACM, 81–93.

[43] wolfSSL. 2020. wolfSSL with Intel® SGX. https://www.wolfssl.com/
wolfssl-with-intel-sgx.

[44] Yuejian Xie and Gabriel H Loh. 2009. PIPP: promotion/insertion
pseudo-partitioning of multi-core shared caches. ACM SIGARCH Com-
puter Architecture News 37, 3 (2009), 174–183.

[45] Haijiang Zhu, Junhui Sheng, Fan Zhang, Jinglin Zhou, and Jing Wang.
2016. Improved maximally stable extremal regions based method for
the segmentation of ultrasonic liver images. Multimedia Tools and
Applications 75, 18 (2016), 10979–10997.

https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.wolfssl.com/wolfssl-with-intel-sgx
https://www.wolfssl.com/wolfssl-with-intel-sgx

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Preloading Pages for SGX Enclaves
	3.1 DFP: Dynamic Fault History-Based Preloading
	3.2 SIP: Source-Level Instrumentation-Based Preloading

	4 Implementation
	4.1 Page Access Predictors in DFP
	4.2 Implementation of Abort Mechanism in DFP
	4.3 Page Preloading Mechanism in SIP
	4.4 Instrumentation for Page Preloading in SIP

	5 Experimental Results
	5.1 Performance Study of DFP
	5.2 Performance Study of SIP
	5.3 Results of Two Real-World Applications
	5.4 Combining SIP and DFP
	5.5 TCB Size Study
	5.6 Discussion

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

