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Abstract—Dynamic Binary Translation (DBT) is a key en-
abler for cross-ISA emulation, system virtualization, runtime
instrumentation, and many other important applications. Among
several critical requirements for DBT, it is important to provide
equivalent semantics for atomic synchronization instructions such
as Load - Link / Store - Conditional (LL/SC), which are
mostly included in the reduced-instruction set architectures (RISC)
and Compare-and-Swap(CAS), which is mostly in the complex
instruction set architectures (CISC). However, the state-of-the-
art DBT tools often do not provide a fully correct translation
of these atomic instructions, in particular, from RISC atomic
instructions (i.e. LL/SC) to CISC atomic instructions (i.e. CAS),
due to performance concerns. As a result, some may cause the
well-known ABA problem, which could lead to wrong results
or program crashes. In our experimental studies on QEMU, a
state-of-the-art DBT, that runs multi-threaded lock-free stack
operations implemented with ARM instruction set (i.e. using
LL/SC) on Intel x86 platforms (i.e. using CAS), it often crashes
within 2 seconds.

Although attempts have been made to provide correct emu-
lation for such atomic instructions, they either result in heavy
execution overheads or require additional hardware support. In
this paper, we propose several schemes to address those issues
and implement them on QEMU to evaluate their performance
overheads. The results show that all of the proposed schemes can
provide correct emulation and, for the best solution, can achieve
a min, max, geomean speedup of 1.25x, 3.21x, 2.03x respectively,
over the best existing software-based scheme.

Index Terms—Dynamic Binary Translation, Scalability

I. INTRODUCTION

Dynamic binary translation (DBT) has been widely used in
many application areas [1] [2] [3] [4]. Therefore, a considerable
amount of effort has been dedicated to enhance its performance
and functionality, in particular, for multi-threaded applications
[5] [6] [7]. As multi-core and many-core processors have
become ubiquitous, DBT tools such as QEMU [8] [9] and
PICO [10] have been either extended or designed to run on
such platforms.

One of the most challenging requirements for emulating
multi-threaded applications on multicore systems is semanti-
cally equivalent emulation of the code regions that involve
atomic instructions. There are different support of atomic
instructions in different instruction set architectures (ISAs).
Examples include Compare-and-Swap(CAS) instruction
on CISC machines (e.g. cmpxhg on Intel x86 platforms),
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and Load-Link/Store-Conditional(LL/SC) instruc-
tions on RISC machines (e.g. ldrex and strex on ARM
platforms).

For multi-threaded guest applications emulated on a DBT
that runs on a multi-core host machine, such as QEMU, there
are several ways to carry out such an emulation. We can use
a single host thread to emulate multiple guest threads. In
this case, the emulation of guest atomic and synchronization
instructions is fairly simple. Each guest atomic instruction can
be safely emulated by multiple host instructions, as long as they
are completed before the next guest instruction after the atomic
instruction is emulated, or before it is switched to another guest
thread. In this case, the atomicity of a guest atomic instruction
is guaranteed, i.e. its atomicity can be achieved ”for free”, with
multiple non-atomic host instructions.

The situation is much more complex when multiple host
threads are involved to emulate multiple guest threads for
scalability concerns. In this case, the emulation of guest atomic
instructions requires more careful orchestration by a host
machine that has a different set of atomic instructions. From
the prior work [11], it is found that is is easier to emulate
guest atomic instructions such as CAS from a CISC machine
with host synchronization instructions such as LL/SC on a
RISC host machine. However, it is much more challenging
when it is the other way around. It is because additional
hardware support is usually provided to guarantee the strong
atomicity [12] on the synchronization variable involved in the
LL/SC instructions on RISC machines. The strong atomicity
guarantees that any update/modification to the synchronization
variable of the LL/SC pair by any other thread will break its
atomicity. Using software to emulate LL/SC without enforcing
the strong atomicity will cause the so-called ABA problem [13].

The ABA problem can occur when multiple threads in-
terleave their accesses to a shared memory location. It is a
correctness issue of DBT that leads to crashes or even wrong
results without crashing, making it even more difficult for
programmers to locate the bug. Any program that relies on
LL/SC, such as those in PARSEC, has potential ABA problems
on QEMU. Our test case using multi-threaded Arm lock-free
stack always crashes within 2 seconds with 16 threads on
QEMU. Hence, our focus is on how to ensure that ABA does
not occur and with a minimal cost on performance.

Assume one thread reads the shared memory location and
gets a value A. The shared memory location is then modified
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with a new value B by another thread, and immediately restored
back to the value A by the same or a different thread. When
the first thread revisits the shared memory location, it will find
the value is unchanged. It can draw a wrong conclusion that
the location has never been accessed and modified between
its two visits. Unless additional effort is made, which often
requires a lot of overhead, the thread has no way of knowing
whether the content of the shared memory location has been
changed or not between the two visits.

It is nontrivial to resolve the ABA problem. Prior research
has proposed to use a version number-based approach [13]
[14] and Hazard Pointers [15] to address this problem. In some
recent work, PICO [10] addresses the ABA problem in the
context of emulating atomic/synchronization instructions in
DBT. But, they all involve a substantial amount of runtime
overhead or work only for some special cases, but may work
incorrectly on others, to cut down the overhead. We will further
discuss those issues in Section II-A.

In this paper, we explore the design space of emulating
atomic instructions from a RISC guest machine to a CISC
host machine that usually involves emulating LL/SC-like
instruction pairs using CAS-like instructions. We propose
two new strategies. One is called HST (Hash Table-Based
Store Test) scheme, which maintains a non-blocking hash table
to record the latest thread that updates a memory location,
and requires a thread to check the access permission before
accessing the memory location. The other is called PST (Page
Protection-Based Store Test) scheme, which takes advantage of
the page protection mechanism in OS to capture memory access
violation. In addition, we discuss the design trade-off between
performance overhead and correctness issues among different
design strategies. Comprehensive experiments are conducted
to evaluate their effectiveness and efficiency.

In summary, we have made the following contributions.
• We have proposed two new strategies, HST and PST, to

allow correct and efficient emulation of atomic/synchro-
nization instructions in cross-ISA DBTs.

• We have implemented and evaluated various design
tradeoffs on QEMU. Our experimental results show that
our proposed schemes can correctly emulate the target
atomic and synchronization instructions. The best scheme
can achieve an average of 2.03× speedup over the best
existing software-based scheme with a similar capability.

The rest of this paper is organized as follows. Section II
provides some background on DBT, LL/SC instructions, the
ABA problem and our motivation. Section III describes the
design details of our approaches. Section IV shows some
experimental results with discussions. Section V present some
related work, and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we give a brief introduction on the LL/SC
instruction pair (Section II-A), their emulation in DBT (Sec-
tion II-B), the potential ABA problem (Section II-C), and the
issues related to atomicity (Section II-D).

A. Load-Link (LL) and Store-Conditional (SC)

LL and SC, which are in the form of ldrex and strex
in ARM’s instruction set, are a pair of instructions used in
multi-threaded programs to support synchronization [16]. The
LL instruction loads the value stored in a target memory
location for its synchronization variable into a register. It is also
associated with an exclusive flag to monitor whether the target
memory location has been modified before the subsequent SC
instruction is executed. The SC instruction will store a new
value to the target location only if no update has occurred
since its LL instruction. In other words, there is a period
between the LL instruction and the SC instruction that should
be kept ”atomic”. If the target location has been modified
by other threads during this ”atomic period” using either SC
instructions or regular store instructions, the exclusive flag
will be nullified and its corresponding SC instruction will fail.

Note that the store instruction from the same thread will
not nullify the exclusive flag. In addition, the LL/SC pair
cannot be nested, which means only one memory location can
be monitored by one thread at a time. If there are multiple LL
instructions and each with its own synchronization variable,
only the target location of the last LL instruction will be
monitored.

In general, the LL and SC instructions are designed for RISC
architectures. They are often used in system libraries for critical
sections and functions such as atomic add and mutex lock.
However, the LL and SC instructions can be used separately
in other scenarios, for example, to avoid the ABA problem in
implementing a lock-free stack in a SHA-1 pattern searching
algorithm [17].

Memory

EMRa,x,sizeof(*x)

T1: LLa(x)

Htable_set(x, tid);

T3: SCa(x)

start_exclusive();

Htable_check(x, tid);

Htable_set(x, tid);

store(x);

load(x);

llsc_addr=x;

check(llsc_addr==x);

T2: Sb(x)

Htable_set(x, tid);

store(x);

end_exclusive();

Memory

EMRa,x,sizeof(*x)

T1: LLa(x)

T3: SCa(x)

CAS(x, oldval, newval)

oldval=*x;

llsc_addr=x;

check(llsc_addr==x)

T2: Sb(x)

store(x);

load(x);

Memory

EMRa,x,sizeof(*x)

T1: LLa(x)

T3: SCa(x)

CAS(x, oldval, newval);

oldval=*x;

llsc_addr=x;

check (llsc_addr==x);

T2: Sb(x)

store(x);

load(x);

Fig. 1. ”Slightly incorrect” emulation of LL/SC in current QEMU.

B. LL/SC Emulation in DBT

Prior work has proposed techniques to correctly emulate
LL/SC instructions on CISC machines. A straightforward
technique, called PICO-ST [10], associates the target address
of the synchronization variable and the thread ID of a LL/SC
pair with a software exclusive flag. The SC instruction will
check the exclusive flag before updating the target location.
It also instruments all store instructions of other threads
to check their associated addresses against the target address
of the LL/SC pair, and clears the exclusive flag if there is a

352



conflict. PICO-ST can correctly emulate LL/SC instructions.
However, it incurs significant runtime overheads as every
store instruction has to be instrumented and checked against
the target address of the active LL/SC pair. Furthermore, it
has to be done in a multi-threaded environment, i.e. such a
check and update has to be done atomically as well. The
instrumentation is implemented as a helper function in PICO-
ST, which incurs extremely heavy runtime overheads.

Another technique, called PICO-HTM [10], tries to reduce
the runtime overhead by using the hardware transactional
memory (HTM) support. In this technique, HTM hardware
will detect the memory updates to the synchronization variable
during the ”atomic period”. It encapsulates the code between
the LL/SC pair as a transaction. ”Strong atomicity” is enforced
by HTM during the execution of a transaction. That is, if there
is any update/change to the memory locations accessed in an
active transaction, it will be detected by the HTM hardware, and
the transaction will fail and be aborted. The aborted transaction
will either be rolled back and restarted from the beginning, or
follow a fallback path provided by the programmer to ensure
forward progress. However, it is not trivial to integrate HTMs
into a DBT as the emulation part of the software in DBT will
often interfere with the emulated code in HTM [18], which
can cause unexpected and frequent HTM aborts unless extreme
care is given. As HTM is not commonly supported on today’s
machines, HTM-based techniques are also less portable.

Due to the performance and portability concerns, the
implementation in the latest version of QEMU uses a slightly
incorrect design, called PICO-CAS in [10]. It is based on
the observation that atomic operations in C/C++11 are mostly
implemented through the CAS-like instructions. In the Linux
kernel, LL/SC instructions are also only used to emulate the
CAS-like operations [10]. Thus, in QEMU, the code section that
is encapsulated by LL/SC instructions is directly translated
into the corresponding code section using CAS instructions
without enforcing the strong atomicity in the encapsulated
code section, i.e. it assumes it is highly unlikely that the target
memory location will be updated/changed during this short
period of time.

Figure 1 shows some details of the PICO-CAS code.
Specifically, when a thread executes the LL instruction, the
value and the address of its synchronization variable are
recorded in oldval and llsc addr after loading the memory
value. When the thread executes the subsequent SC instruction,
after matching the llsc addr, the CAS instruction is used to
compare the current value of the target memory location with
the oldval. If these two values match, it assumes that no memory
update has occurred, and the emulated SC can update the target
memory location. Obviously, it is not always true, and the
current implementation of QEMU can suffer from the ABA
problem even if the guest binary is ”ABA safe”.

C. The ABA Problem

The ABA problem can arise when we try to implement a
lock-less data structure using the atomic instructions such as
CAS to check for memory updates in a critical section. Figure 2

Fig. 2. An example of the ABA problem.

tryPop:
old_top	=	top_ptr;
new_top	=	top_ptr->next;
if	(!CAS(&top_ptr,	
	 old_top,	
	 new_top))
				goto	tryPop;

Pop()
1
2
3
4

5

ABA

tryPop:
LL(top_ptr,	&top_ptr);
new_top	=	top_ptr->next;
SC(fail,	new_top,	
				&top_ptr);
if	(fail)
				goto	tryPop;

Pop()
1
2
3
4
5

Safe

Translate	to	IR

tryPush:
old_top	=	top_ptr;
new_top	=	push_obj;
if	(!CAS(&top_ptr,	
	 old_top,	
	 new_top))
				goto	tryPush;

Push()
1
2
3
4

5

ABA

tryPush:
LL(top_ptr,	&top_ptr);
new_top	=	push_obj;
SC(fail,	new_top,	
			&top_ptr);
if	(fail)
				goto	tryPush;

Push(push_obj)
1
2
3
4
5

Safe

Fig. 3. A lock-free stack before and after QEMU transalation.
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gives an example of a lock-less stack implemented by the code
shown in Figure 3. Figure 3 shows the code before and after
the QEMU translation. In Figure 2, we assume there are 3
threads concurrently accessing the lock-free stack by repeating
POP and PUSH operations using the code shown in Figure 3.

Initially, there are three data elements, A, B, C on the stack,
with A at the top of the stack. Thread 1 first tries to execute POP.
It records that the old top is pointing to A, and both ret and
new top are pointing to B. Assume it is then interrupted by a
context switch and Thread 2 pops A. Afterwards, Thread 3 pops
B and Thread 2 pushes A back, leaving the top ptr pointing
to A again. Thus, when Thread 1 continues its execution and
executes CAS, it incorrectly succeeds and makes the top ptr
point to B, even though the stack has been updated by other
threads, which may lead to a wrong result or even program
crash.

The root cause of the ABA problem is that the CAS
instruction only checks the target value, and ”value unchanged”
is considered as ”nothing has been changed”. The top two
boxes in Figure 3 show an implementation of a lock-less stack
using the LL/SC instructions. Notice that the checking of the
old value in line 2 is replaced by the LL instruction, and then
checked by the SC instruction in line 5. In this way, if the
value has been modified and restored, it will be detected by
the nullified exclusive flag.

Although the LL/SC instructions can deal with the ABA
problem, it is not correctly translated by the current QEMU.
Figure 3 shows its translation in pseudo code. Hence, even
though the program runs correctly on a native ARM machine,
it is likely to crash on QEMU running on Intel x86 platforms
due to the ABA problem. Our experimental studies show it
always crashes in 2 seconds.

D. Strong Atomicity vs. Weak Atomicity

The concept of strong atomicity and weak atomicity describes
how strictly the atomicity is enforced. For strong atomicity,
a transactional semantic guarantees the atomicity is enforced
between transactions and non-transactional codes. while weak
atomicity guarantees the atomicity is enforced only among
transactions, but not with the non-transactional code regions
[19] [12].

Based on the above definition, the LL/SC instructions have
the requirement of strong atomicity. Any change to their
atomic variable1 either by other LL/SC instructions or store
instructions in non-transactional code regions in other threads
will break the atomicity. As atomic variables are rarely updated
by the regular store instructions in non-transactional code
regions, which means only enforcing weak atomicity without
monitoring other store instruction could provide adequate
results with reduced overheads. Current QEMU only enforces
weak atomicity for the emulation of LS/SC to avoid substantial
overhead.

1We will call the operand in the LL/SC instructions synchronization variable
and atomic variable interchangeablely in the paper.

III. TWO PROPOSED SCHEMES: HST AND PST
In this section, we present two main schemes with some

of their optimized variations to address the ABA problem. In
general, they can be classified as software-based schemes and
hardware-based schemes, respectively

A. Hash Table-Based Store Test (HST) Scheme

The hash table-based store test scheme (HST) is a software-
based scheme. In order to correctly emulate the LL and SC
instructions, the violation of their atomicity must be detected.
A straightforward way is to track the access of the atomic
variable of each LL/SC instruction, and instrument each
store instruction in non-transactional code regions to check
for potential conflicts with any of those atomic variables. Their
codes are shown in Figure 5. The atomic variable is recorded
in LL, updated in store and checked in SC.

It is worth noting that since store instructions happen more
frequently than atomic instructions, it is critical to implement
them in a highly efficient manner. Hash table lookups and
updates are in the critical path of all the instrumented store
operations. It is thus a major consideration to minimize hash
table operations in our design.

Memory

EMRa,x,sizeof(*x)

T1: LLa(x)

Htable_set(x, tid);

T3: SCa(x)

start_exclusive();

Htable_check(x, tid);

Htable_set(x, tid);

store(x);

load(x);

llsc_addr=x;

check(llsc_addr==x);

T2: Sb(x)

Htable_set(x, tid);

store(x);

end_exclusive();

Htable_set(x, tid)

Htable_check(x, tid)

{*Hash(x)=tid;}

{return *Hash(x)==tid;}

Hash table operations

guest address

31 0

hash entry address1100 00

hashing

Guest 
Memory

0xa0000000

0xb0000000
Hash table

Mapping

Mapping

31 27 02

tid
tid
tid
...

Hash table

1010

Fig. 4. Hash table design in HST.

As shown in Figure 4, a very simple and efficient hashing
algorithm is used in our implementation. It maps the guest
virtual space to a hash table in an unused memory region
(from 0xa0000000 to 0xb0000000 in this example). The
hash function takes in a guest virtual address and outputs an
address points to a hash entry by setting the highest half byte
to the start address of the hash table (0xa in this example)
while zeroing the lowest 2 address bits to provide a 4-byte
alignment for each hash entry. To reduce the access overhead,
we provide a non-blocking hash table that has only one field
(instead of multiple fields), and allows it to be updated with a
single instruction. The index of the hash table is embedded in
its memory address, and the value of the entry is its thread ID.
In this way, the Htable set and the Htable check operations
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Memory

EMRa,x,sizeof(*x)

T1: LLa(x)

Htable_set(x, tid);

T3: SCa(x)

start_exclusive();

Htable_check(x, tid);

Htable_set(x, tid);

store(x);

load(x);

llsc_addr=x;

check(llsc_addr==x);

T2: Sb(x)

Htable_set(x, tid);

store(x);

end_exclusive();

Htable_set(x, tid)

Htable_check(x, tid)

{*Hash(x)=tid;}

{return *Hash(x)==tid;}

Hash table operations

guest address
31 0

hash entry address1100 00

hashing

Guest 
Memory

0xa0000000
0xb0000000 Hash table

Mapping

Mapping

31 27 02

tid
tid
tid
...

Hash table

Fig. 5. LL/SC and store in HST.

shown in Figure 5 can be done with a single store and load,
respectively, without the need for atomic operations. Also, this
simple design makes it possible to implement them in DBT IR,
instead of using helper functions whose calls require a context
switch to QEMU and will incur much higher overhead.

As shown in Figure 5, each LL and store instruction
is instrumented (at the IR level) to set the corresponding
entry value to the thread ID (tid), while SC checks the entry
value to see if it has been modified and the tid is matched.
These operations have to be done exclusively. As shown in
Figure 5, start_exclusive and end_exclusive (the
two functions provided by QEMU) are used to ensure the
atomicity of SC.

Note that there could be conflicts at the hash table. These
conflicts don’t affect the correctness, and happen rarely, i.e.
only 2.4% in PARSEC. For example, between LL and SC
instructions, if another thread issues a store instruction that
has the same hashed index as the LL/SC but with a different
address, the store instruction will modify the hash entry to
its thread ID and cause the SC instruction to fail. However,
the SC will perform a retry, and its atomic semantic is not
affected.

B. Improving HST with HTM

HST can be further optimized if there is additional hardware
support, such as hardware transactional memory (HTM), to im-
plement the critical section for the SC emulation. As shown in
Figure 6, the check and the update operations of the hash table
in SC can be implemented with an HTM transaction to replace
the slow critial section, i.e. replacing start_exclusive
with HTM_xbegin and end_exclusive with HTM_xend.

Note that this approach is different from the PICO-
HTM scheme [10] mentioned earlier. PICO-HTM adds
HTM_xbegin before LL and HTM_xend() after SC. How-
ever, Pico-HTM can cause ”livelocks” if QEMU needs to
emulate or translate guest code between LL/SC, i.e. QEMU
code becomes part of transaction in addition to code between
LL/SC. It significantly inflates code size within HTM and

Memory

EMRa,x,sizeof(*x)

T1: LLa(x)

Htable_set(x, tid);

T3: SCa(x)

HTM_xbegin();

Htable_check(x, tid);

Htable_set(x, tid);

store(x);

load(x);

llsc_addr=x;

check(llsc_addr==x);

T2: Sb(x)

Htable_set(x, tid);

store(x);

HTM_xend();

Htable_set(x, tid)

Htable_check(x, tid)

{*Hash(x)=tid;}

{return *Hash(x)==tid;}

Hash table operations

guest address
31 0

hash entry address1100 00

hashing

Guest 
Memory

0xa0000000
0xb0000000 Hash table

Mapping

Mapping

31 27 02

tid
tid
tid
...

Hash table

Fig. 6. LL/SC and store in HST-HTM.

can cause repeated HTM aborts [18]. To address this issue,
HST-HTM uses a hash table to limit the transaction code and
emulates ”only” SC as described in Figure 6, instead of code
“between” LL/SC as in PICO-HTM.

Memory

EMRa,x,sizeof(*x)

T1: LLa(x)

Htable_set(x, tid);

T3: SCa(x)

Htable_lock(x);

Htable_check(x, tid);

Htable_set(x, tid);

store(x);

load(x);

llsc_addr=x;

check(llsc_addr==x);

T2: Sb(x)

store(x);

Htable_unlock(x);

Htable_set(x, tid)

Htable_check(x, tid)

{*Hash(x)=tid;}

{return *Hash(x)==tid;}

Hash table operations

guest address

31 0

1100 00

hashing

Guest 
Memory

0xa0000000

0xb0000000
Hash table

Mapping

Mapping

31 27 02

Htable_lock(x);

spin_lock(Hash(x)+4);

Htable_unlock(x);

spin_unlock(Hash(x)+4);

Htable_lock(x);

spin_lock(Hash(x)+4);

Htable_unlock(x);

spin_unlock(Hash(x)+4);

guest address

tid entry addr1100 000

hashing31 27 3

lock entry addr1100 100

+0

+4

0
tid

lock
tid

lock

Hash table

...

Fig. 7. Hash table design, LL/SC and store translation for HST-WEAK.

C. Improved Hash Table-Based Store Test (HST-WEAK)

To look for opportunities to further improve the performance
of HST, a code analysis is conducted on the generated binary
code of PARSEC [20] benchmark suite and the Linux kernel.
Based on the analysis, the shared data can be modified by
multiple threads using atomic instructions such as LL/SC
during lock contention, and only be updated by the lock-owner
thread with normal stores.

Based on the observation, we simplify the atomic instruction
emulation with a weak atomicity model, i.e. only the effects of
atomic instructions(LL/SC) among threads are considered. The
store instructions are not instrumented to check for conflicts
with LL/SC. We also assume there is no race condition between
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LL/SC instructions and store instructions. Hence, the HST
can be simplified as shown in Figure 7. We call this optimized
scheme HST-WEAK scheme.

Obviously, HST-WEAK is not a fully correct solution
since potential conflicts with store instruction are neglected.
Similar to PICO-CAS, it may thus lead to the ABA problem.
It is different from PICO-CAS, which is used in current
version of QEMU. In HST-WEAK, it will produce a correct
result if LL/SC instructions are used following their intended
programming convention. This is because, in HST-WEAK,
we still track the thread ID of LL/SC while PICO-CAS only
guarantees the update operations are atomic (i.e. using CAS).
Hence, any conflict among LL/SC in different threads with
the same atomic variable can be captured by HST-WEAK,
while PICO-CAS may not, if the timing of an LL/SC pair is
overlapped with another in a different thread (see Section IV-A
for more details).

Memory

EMRa,x,pagesize

T1: LLa(x)
mprotect(x, RO);

T3: SCa(x)

xmon_clear(x);

xmon_clear(x)

mprotect(x, RW);

store(x);

xmon_set(a, x);
T2: Sb(x)

page fault!

store(x);

end_exclusive();

load(x);

T2: Sb(y)
store(x);

pagefault handler

xmon_clear(x);

mprotect(x, RW);

exclusive monitor
xmon_set(a, x)

xmon_check(a, x)

add exclusive mark on x

remove all exclusive marks on x

return exclusive state on x

Memory

EMRa,x,pagesize

T1: LLa(x)
mprotect(x, RO);

T3: SCa(x)

xmon_check(a, x);

xmon_clear(x)

mprotect(x, RW);

store(x);

xmon_set(a, x);
T2: Sb(x)

page fault!

store(x);

end_exclusive();

load(x);

start_exclusive();

T2: Sb(y)
store(x);

pagefault handler

xmon_clear(x);

mprotect(x, RW);

exclusive monitor
xmon_set(a, x)

xmon_check(a, x)

add exclusive mark on x

remove all exclusive marks on x

return exclusive state on x

start_exclusive();

xmon_check(a, x);

Fig. 8. LL/SC and store translation for PST.

D. Page Protection-Based Store Test (PST) Scheme

To monitor the changes to the atomic variable of LL/SC
by the store instructions in non-transactional code regions, we
can also employ the page protection mechanism in OS. When
emulating the LL instruction, in addition to access the hash
table entry, it will set the page that contains its atomic variable
to ”read-only”. Any store operation that tries to access the
atomic variable will be captured and triggers a page fault. In
the page-fault handler, we check whether the store address
matches the address of the atomic variable or not. If the store
address matches, the atomicity of the LL/SC is broken and a
retry of LL/SC will be needed. Otherwise, it will be executed
as a regular store operation without breaking the atomicity. We
call it the Page Protection-Based Store Test (PST) Scheme, and
its procedure is shown in Figure 8.

In the PST scheme, before SC operations are to be carried
out, the page protection need to be changed from ”read-only”
back to ”writable”. After the SC operations are completed, the
page protection should be changed back to ”read-only” again.
This process could incur high overhead because a context

switch to OS kernel mode and change page protection may
require all threads to be suspended.

Memory

EMRa,x,pagesize

T1: LLa(x)
mprotect(x, RO);

T3: SCa(x)

xmon_clear(x);

xmon_clear(x)

mprotect(x, RW);

store(x);

xmon_set(a, x);
T2: Sb(x)

page fault!

store(x);

end_exclusive();

load(x);

T2: Sb(y)
store(x);

pagefault handler

xmon_clear(x);

mprotect(x, RW);

exclusive monitor
xmon_set(a, x)

xmon_check(a, x)

add exclusive mark on x

remove all exclusive marks on x

return exclusive state on x

Memory

EMRa,x,pagesize

T1: LLa(x)
mprotect(x, RO);

T3: SCa(x)

xmon_check(a, x);

mprotect(z, RW);

store(z);

xmon_set(a, x);
T2: Sb(x)

page fault!

store(x);

mremap(z, x);

load(x);

mremap(x, z);

T2: Sb(y)
store(x);

pagefault handler

xmon_clear(x);

mprotect(x, RW);

start_exclusive();

xmon_check(a, x);

lock(&sc_lock);

xmon_clear(x);

unlock(&sc_lock);

lock(&sc_lock);

unlock(&sc_lock);

lock(&sc_lock);

unlock(&sc_lock);

ACCERR: privilege violation MAPERR: page not mapped

Fig. 9. LL/SC and store translation for PST REMAP.

Compared to the HST scheme, PST eliminates the need to
instrument all of the store instructions in the non-transactional
code regions. However, page granularity may be too large for
monitoring the atomic variable of LL/SC in some applications.
The store instructions to the same page of the atomic variable
may have the effect of ”false sharing” and trigger unintended
page faults.

E. Optimization of Remap

The critical section in PST is to avoid writing from
other threads, while only allowing the SC thread writing to
the page. The crux of the problem is giving threads with
different privileges to one page. We can therefore employ
the sys_mremap [21] feature to map one physical page to
multiple virtual addresses, so that one page could have different
page privileges. For example, in Figure 9, during SC, we remap
the page x to a new address z with write privilege, leaving the
original address x unmapped. Then all the operations inside
emulated SC is redirected to address z. This prevents other
threads reading or modifying the page since all the operations
to the ummaped address x triggers pagefault with erro number
MAPERR(mapping error). Therefore, the pagefault handler of
mapping error simply waits the completion of SC by locking
and unlocking. In SC, after the critical operations, we remap
the page at z back to original address x and performs unlock to
wake the threads blocked by pagefault handler. We will discuss
the performance details in Section IV.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To study the efficiency and the effectiveness of our schemes,
We have implemented them on QEMU-4.1, which is the latest
version of QEMU when we started this project. As QEMU-4.1
can be considered as an implementation of PICO-CAS, we also
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implemented PICO-ST and PICO-HTM faithfully to the best
of our knowledge. To measure the overhead and scalability,
We conducted our experiments on a bare-metal cloud server
from Alibaba [22], which has 52 physical cores and 187GB
memory. Due to the lack of the HTM support on the cloud
server, we also employed a local workstation with 10 cores
(20 threads), 2.20GHz Intel(R) Xeon(R) Silver 4210 CPU
and 64GB memory to evaluate the HTM-based schemes. The
operating system is Ubuntu-18.04LTS with linux-4.15.0-65
kernel and the benchmark suite is PARSEC 3.0 [20] with
simlarge input set. Canneal has only 30% parallelism so it
is not an appropriate benchmark to study “scalability”, and thus
is excluded in the scalability analysis section but is included
in the overhead analysis section. In all of our experiments, we
use ARM as the guest ISA and Intek x86 64 as the host ISA.
For all of the experiments, we run each case 3 times and take
their average to account for potential variations.

A. Atomicity and the ABA Problem

To simplify our presentation, we introduce the following
symbols to represent different events.

Symbol Note
LLa(x(c)) Thread a performs an LL to

address x, with an initial value of
c at x.

SCa(x(c, d)) Thread a performs an SC of a
value d to address x, with an initial

value of c at x.
Sa(x(c)) Thread a performs a store of a

value c to address x.

There are 4 basic execution sequences of LL, SC and S as
shown below (using the symbols defined above) that can cause
the ABA problem in PICO-CAS, which is used in current
QEMU. The symbol ”#” in SC means ”don’t care”.

(Seq 1) LLa(x(c)) → Sb(x(d)) → Sb(x(c)) →
SCa(x(c,#))

(Seq 2) LLa(x(c)) → LLb(x(c)) → SCb(x(c, d)) →
LLb(x(d)) → SCb(x(d, c)) → SCa(x(c,#))

(Seq 3) LLa(x(c)) → LLb(x(c)) → SCb(x(c, d)) →
Sb(x(c)) → SCa(x(c,#))

(Seq 4) LLa(x(c)) → Sb(x(d)) → LLb(x(d)) →
SCb(x(d, c)) → SCa(x(c,#))

More complicated ABA scenarios can be derived from these
basic sequences. According to the original LL/SC semantic,
all above execution sequences will cause SC to fail. Based
on the execution sequences, the strong and weak atomicity as
defined in Section II-D can be described as follows.

weak LLa(x(c)) → [LLb(x(#))] → SCb(x(#, d)) →
SCa(x(d,#)) (failed)

strong LLa(x(c)) → Sb(x(c)) → (failed)SCa(x(c,#))
(failed)

The square brackets around LLb(x) means it can happen
either before or after LLa(x(c)).

Note that strong atomicity covers the cases of weak atomicity,
i.e. if weak atomicity fails, strong atomicity also fails. If weak
atomicity is supported, Seq 2, Seq 3, and Seq 4 will fail
because there is a [LLb(x(#))] → SCb(x(#,#)) between
LL/SC, which is not allowed in weak atomicity. In addition,
if strong atomicity is supported, Seq 1 will also fail because
Sb(x(#)) is not allowed between LL and SC. Based on the
above conditions, we can verify the strong and weak atomicity
associated with each scheme as follows.

HST - strong atomicity: Initially, the hash table entry is
set by Thread a with an LLa(x(c)). Then store and SC
from thread b are guaranteed to complete before SCa(x(c, d))
since it is protected by an exclusive region. Thus, if the entry
is changed by Thread b before the SCa(x(c, d)), it will fail.

HST-WEAK - weak atomicity: Note that, in HST-WEAK,
there is no instrumentation for stores. So, Thread a is not aware
of any Sb(x(c)) between LL/SC. However, SCb(x(#, c)) is
guaranteed to complete before SCa(x(c, d)) due to the lock
in the hash table. Hence, only weak atomicity is guaranteed.

HST-HTM - strong atomicity: Different from HST-WEAK,
HTM tracks all store instructions. According to the atomicity
provided by HTM, SCa(x(c, d)) can be completed atomically.
Sb(x(c)) can thus be completed before the Htable check and
the SCa(x(c, d))) will fail. This provides strong atomicity.

PST - strong atomicity: Same as HST, SCb(x(#, c))
and Sb(x(c)) will complete before the exclusive protection
on SCa(x(c, d)), which clears the exclusive state before
SCa(x(c, d)) and results in a failure.

To validate our proposed schemes, we also implement
a micro-benchmark with a lock-free stack as described in
Figure 3. Following the steps shown in Figure 2, when the
pointer next of an entry in the lock-free stack points to itself, it
is a sign that an ABA scenario has occurred. We use 16 threads
to run the micro-benchmark program on an Intel x86 platform,
and execute POP and PUSH operations 1048575(0xFFFFF)
times. When all threads have completed, we go through the
lock-free stack to check whether there exists an entry whose
pointer next points to itself. We have tested the QEMU-4.1,
PICO-ST, PICO-HTM, HST, HST-WEAK, HST-HTM, PST
and PST-REMAP. The results show that among all schemes,
only QEMU-4.1 has an average of 4% of the entries having
the ABA problem, while all other schemes have none - even
in HST-WEAK scheme.

B. Performance Evaluation

1) Scalability: Figure 10 shows the scalability of HST,
HST-WEAK, PST and PICO-ST from one thread to 64
threads. We normalize the speedups over their own single-
thread performance. HST-WEAK scales the best for all of the
programs. HST, PST and PICO-ST also scale well for all of the
programs except fluidanimate and swaptions. As PICO-CAS
ignores the strong atomicity requirement of LL/SC, it avoids
the runtime overhead of instrumentation and synchronization.
HST-WEAK, on the other hand, uses a weak atomicity model
and only enforces the exclusion during the SC emulation. It
shows that HST-WEAK actually has a similar performance
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Fig. 10. Normalized Speedup over single-thread on QEMU-4.1 for arm-PARSEC .
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Fig. 11. Normalized Speedup over single-thread on QEMU-4.1 for arm-PARSEC (HTM-based schemes).

compared to that of PICO-CAS. Due to a more optimized
implementation that includes IR-level instrumentation and a
non-blocking hash table, HST outperforms PICO-ST in almost
every benchmark program. As for PST, it delivers the worst
performance for many benchmarks.

To better understand their scalability, each program is
profiled to get more details on the overhead of instrumentation,
instruction composition and other runtime overhead. The results
are shown in Figure 12. In Figure 12, each program has four
bars for each thread configuration (from 1 thread to 32 threads).
From left to right, they are PICO-ST, HST, PST and PST-
REMAP. Because of some implementation issues, PST-REMAP
currently cannot run on all of the applications. So, for some
programs, the data for PST-REMAP is missing.

Each bar is further broken down into several components.
The execution time of the basic QEMU functions is shown
as the ”native” component. The ”exclusive” component is the
time spent on the locking support. It includes the time spent on
enforcing the exclusion for SC in HST and PST, and locking
overhead on the hash table in PICO-ST. The ”instrument”
component comes mainly from store instrumentation in HST
and LL/SC emulation in PICO-ST. The ”mprotect” component
is the time spent on system calls in LL/SC for PST. It can be
seen that, comparing to PICO-ST whose major overheads are in
store instrumentation and synchronization, mprotect overhead
from system calls in PST has largely offset the benefit of
eliminating the store instrumentation for PST.

We have also measured the performance of HTM-based
solutions, and the results are shown in Figure 11. It can be seen
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Fig. 12. Overhead breakups for selected benchmarks of PARSEC.

TABLE I
THE DYNAMIC COUNTS (IN PERCENTAGES) OF LL/SC AND STORE IN
PARSEC WITH 4 THREADS AND simlarge INPUT USING QEMU-4.1.

Application LL/SC(%) store(%)
blackscholes 0.00506 6.56

bodytrack 0.00142 5.38
canneal 0.09168 20.42
facesim 0.08322 13.86

fluidanimate 0.08374 5.26
freqmine 0.22046 19.46
swaptions 0.01759 6.70

x264 0.00003 1.00
geomean 0.01207 7.15

that PICO-HTM outperforms HST-HTM when there is only a
small number of threads that do not stress the HTM supporting
hardware, and it is not burdened by the store instrumentation
overhead. However, as the thread number goes beyond 8 threads,
the PICO-HTM will crash frequently, while HST-HTM can
still scale up to 32 threads with good performance.

Overall, the best solution is HST-based schemes. They are
scalable with good performance, and are portable to any plat-
form without requiring special hardware support. Comparing to
the fast but slightly incorrect PICO-CAS scheme, it introduces
an overhead of 2.9% and can be up to 555.0% when the number
of threads increases. The overhead increases dramatically,
especially for applications with intensive atomic operations.
Comparing to the PICO-ST scheme, it has a min/max speedup
of 1.25x and 3.21x, respectively. The geometric mean speedup
of all applications is 2.03x.

2) Overhead Analysis: Generally, to correctly emulate
LL/SC, it it crucial to detect the interference among LL,

SC and store. The software-based solutions, such as HST,
implement it by instrumenting memory stores, while hardware-
based solutions try to mitigate the runtime overhead with the
help of the hardware such as MMU and system support such
as mprotect and page-fault handler. To understand the trade-
off between the hardware-related overhead vs. software-related
overhead such as instrumentation overhead, a program profiling
analysis is conducted and the result is shown in Table I.

PICO-ST carefully inserts locks in both store and LL/SC
to avoid race condition, but introduces large instrumentation
overhead as shown in blackscholes and x264. If we only
instrument the stores and leave alone LL/SC, PICO-ST is
slowed by 20%~45%, which indicates that the instrumentation
overhead comes mainly from store instrumentation. This can
be explained by the amount of store and LL/SC shown in
Table I. The store instructions are 88x~3000x more frequent
than LL/SC.

As HST implements lock-free hash table at the IR level, it
introduces less than 5% overhead while helper functions can
introduce about 20%~45% overall overhead. That explains why
HST has a better performance than PICO-ST in most cases.
Comparing to HST, PST is an aggressive strategy that tries
to shift the overhead from store to LL/SC, i.e. using less
frequent system calls vs. instrumenting a large number of store
instructions. However, Figure 12 shows that PST is actually
worse than HST. This is because the aggregated system call
overheads far exceed the aggregated instrumentation overheads.

HST-HTM uses HTM to support strong atomicity. However,
PST cannot take advantage of HTM because system calls
inside an HTM transaction will cause it to abort. Remapping
a page to another location is a better alternative for PST. It

359



can be seen that, for blackscholes, bodytrack and swaptions,
PST-REMAP can benefit from the page remapping. But in
freqmine, the remapping overhead is more dominant, which is
another evidence that careful trade-offs is essential for good
performance.

Another major overhead is supporting exclusive execution
for critical code sections. All of the schemes avoid race
conditions by utilizing fine-grained locking, or suspending
all the other threads when one thread enters a critical code
section, to support exclusive execution. The percentages of
LL/SC vary and they are used in different scenarios, so their
overheads can vary. In blackscholes and x264, there are very
few atomic instructions so they have good scalability. However,
for bodytrack and facesim, the execution time shows a ”U”
shape as the number of threads increases. As the programs
scale up beyond 8 threads the synchronization overheads, such
as thread barriers, become more dominant. For programs such
as canneal, fluidanimate, freqmine and swaptions, there are
more extensive atomic instructions (see Table I), which cause
such overheads to increase as the number of threads increases.

Store instructions to the same page of the atomic variable
called ”false sharing” results in false alarm and therefore can
hurt the performance of PST. False alarm grows from 0.2% to
17% when threads increase from 2 to 64. Take bodytrack as
an example, the amount of false sharing grows from 0.29% to
16.57% as thread number increase from 1 to 64, respectively.
Consequently, its execution time also shows a ”U” shape as
the number of threads increases.

V. RELATED WORK

Synchronization is one of the most critical parts when
extending DBTs to multiple threads. PQEMU [8] proposes a
weak atomicity model that protects LL/SC by a host mutex. It
serializes the LL and SC instructions that have the same atomic
variable, while the impact of store is ignored. COREMU
[9] uses multi-word compare-and-swap [23] to handle multi-
processor synchronization with lightweight memory transac-
tions, which could still suffer the ABA problem. PICO [10]
emulates atomic instructions by instrumenting stores (in PICO-
ST) or using HTM (in PICO-HTM). DQEMU [24] implements
a hierarchical synchronization scheme, and a distributed share-
memory protocol is used for exclusive accesses among multiple
threads on a multi-node, multi-core system.

Rigo [25] has proposed a soft-MMU based scheme similar to
PST. It extends the soft-MMU of QEMU to detect conflicts on
atomic variables during address translation. It introduces little
additional overhead compared to the system-mode emulation
that has soft-MMU support. But it slows down the user mode
to a larger extent because soft-MMU is already a large portion
of the overhead in user mode. Hui Gao [26] and Maged M.
Michael [27] present an algorithm to implement the semantics
of LL/SC using CAS. It makes the synchronization variables
free from the ABA problem. But, it is based on an strong
assumption that these variables can only be modified by atomic
but not normal writes.

Even though there are many schemes proposed that can
handle LL/SC correctly, they either lead to large overheads
or need additional hardware support. Consequently, QEMU
decides to use the fastest way at the cost of some correctness.
Beside QEMU, there are many DBTs that need to deal with
LL/SC translation, such as Dolphin [28], TinyEmu [29] and
ArcEm [30]. However, they either emulate one thread at a time
in a round-robin manner, or ignore the ABA problem.

VI. DISCUSSION

Optimization using Intel MPK: Theoretically, Intel MPK
can improve the performance with new hardware support,
since it supports thread-local control of the page protection
on groups of pages without requiring changes to the global
page tables [31]. In this way, different permissions can
be set to the threads that are running LL/SC instructions
concurrently without the need to switch to the kernel-mode
and suspend all other threads. However, synchronization could
be a challenge since waiting for other threads to set up the
protection introduced large overheads. Due to the limited
number of protection keys available (only 16 keys on recent
Intel hardware), it is challenging to support multi-threaded
applications with a large number of threads.

Rule-based Code Trasnlation: Rule-based code translation
improves performance [32]. Most of LL/SCs are generated
automatically by compilers, so there is a fixed pattern that
can be recognized. If so, replacing the LL/SC pairs with a C
call to the standard atomic builtin function [33] avoids large
overheads and is free from ABA problem.

VII. CONCLUSION

In this paper, we propose two new schemes, HST and PST, to
address the ABA problem [13] that may happen when emulating
atomic instructions from a RISC guest machine to a CISC host
machine. As described in TABLE II, existing Pico-CAS is an
incomplete and incorrect scheme, while PICO-ST is correct but
with heavy overhead. Our proposed HST is faster, fully correct,
and portable. HST-WEAK and HST-HTM can deliver better
performance, while HST-WEAK sacrificing strong atomicity
and HST-HTM portability. PST is a page protection based
approach to avoid instrumenting stores. However, its system
call overheads far exceed store instrumentation overheads. PST-
REMAP allows concurrent and different page privileges on
the same page to mitigate PST overhead. Prototypes of these

TABLE II
A SUMMARY OF PROPOSED SCHEMES SHOWING TRADE-OFF BETWEEN

ATOMICITY, EFFICIENCY, AND PORTABILITY.

Approaches Speed Atomicity Portability
HST fast strong portable

HST-WEAK fast weak portable
HST-HTM fast strong HTM

PST slow strong portable
PST-remap varies strong portable

Pico-ST slow strong portable
Pico-CAS fast incorrect portable
Pico-HTM fast incorrect HTM
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schemes have been implemented on QEMU-4.1. Experimental
results on a set of benchmarks in PARSEC show that all of
the proposed schemes can provide correct emulation and, the
best scheme, HST, can achieve an average of 2.03× speedup
over the best existing software-based scheme with a similarly
capability.
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APPENDIX

A. Abstract

We provide source codes of all the approaches mentioned in
the paper, including HST, HST-weak, PST, PST-remap, HST-
HTM, Pico-HTM, and Pico-ST, which are already intergrated
in the QEMU emulator version 4.1.0. For the benchmarks,
we provide source codes of our Arm lock-free stack for
correctness evaluation. As for the PARSEC 3.0 benchmark,
you can either compile from source or download the configured
PARSEC with compiled Arm binary directly. To run the
experiments, we provide linux shell scripts for dependency
installation, correctness and performance evaluation, as well
as data collection and result analysis.

B. Artifact Check-list
• Program: QEMU-4.1.0 with various approaches integrated;

PARSEC 3.0; Arm lock-free stack
• Data set: We use simlarge input with PARSEC
• Run-time environment: linux-5.4, Ubuntu-20.04LTS
• Hardware: We recommend using x64 processors suppport-

ing more than 40 threads. Note that verifying HTM based
solutions needs Intel TSX.

• Disk space required: 40GB
• Time needed to prepare workflow: Less than an hour if you

use PARSEC binaries instead of compiling from source.
• Time needed to complete experiments: Around 3 days
• Publicly Link: https://github.com/NKU-EmbeddedSystem/

ABA-LLSC
• Code licenses : The GNU General Public License (GPL)
• Experiment Workflow: Linux shell scripts

C. Installation

In this section, we prepare executable binaries for QEMU
with Arm guest, PARSEC in Arm, and Arm lock-free stack.

1) Prepare PARSEC-3.0 for Arm: If you want to compile
PARSEC from the very beginning, you can download the
source of PARSEC and follow the instructions here https:
//github.com/arm-university/arm-gem5-rsk/wiki to enable cross-
compiling to Arm.

However, we strongly recommend you to use our configured
PARSEC to avoid trivial setup of cross-compile, which is not
our focus here.

git clone https://github.com/NKU-EmbeddedSystem/
parsec-3.0-arm.git

2) Fetching Code: Here we fetch the source codes of QEMU
and lock-free stack.

git clone https://github.com/NKU-EmbeddedSystem/ABA-
LLSC.git

cd ABA-LLSC
git clone https://github.com/NKU-EmbeddedSystem/QEMU

-ABA.git
git clone https://github.com/NKU-EmbeddedSystem/lock

-free-stack-arm-asm.git
sudo bash installDep.sh

3) Build: To build portable approaches,

cd ABA-LLSC
bash build.sh

If Intel TSX is supported, you may also build HTM based
approaches,

cd ABA-LLSC
bash build-HTM.sh

D. Experiment Workflow

In the workflow we evaluate the correctness and perfor-
mance. Make sure the binaries have been compiled.

1) Correctness: We use an arm lock-free stack to evaluate
if the solution suffers ABA problem. If the solution suffers
ABA problem, it can’t pass the test.

cd ABA-LLSC/experiment
bash correctness.sh

If TSX supported

bash correctness-HTM.sh

2) Performance: We use parsec-3.0 benchmark to profile
performance. Configure parsec and then we can start the script.
It may take about 3 days, so we’d better run it in backend.

cd path-to-parsec
source env.sh
cd path-to/ABA-LLSC/experiment
nohup bash scalibility.sh & # run in backend

If TSX is supported, you may also evaluate HST-HTM.

cd path-to-parsec
source env.sh
cd path-to/ABA-LLSC/experiment
nohup bash scalibility-HTM.sh

Pico-HTM leads to potential livelock and PST-remap can
only run four applications in parsec 3.0, so they’re not involved
in performance scripts. PST-remap only supports blackscholes,
bodytrack, freqmine, and swaptions in parsec benchmarks.

You can also run them manually using Linux commands.

cd path-to-parsec
source env.sh
cd path-to/ABA-LLSC/experiment
parsecmgmt -a run -p <program> -i simlarge -n <

thread number> -s "time $(pwd)/../bin/$1"
# Eg. parsecmgmt -a run -p blackscholes -i simlarge

-n 4 -s "time $(pwd)/../bin/Pico-HTM"
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E. Evaluation and Expected Results

1) Correctness: When testing Pico-CAS, it shows ”Stack is
smashed” in logs while other solutions show ”ABA problem
test passed!”.

2) Performance: We provide scripts to calculate speedup
normalized to single thread execution time of Pico-CAS of the
solutions.
cd experiment
python3 ./speedup.py
cat speedup.csv

Run ”draw.py”. It generates the figure called ”speedup.pdf”.
python3 ./draw.py
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