
DQEMU: A Scalable Emulator with Retargetable
DBT on Distributed Platforms

Ziyi Zhao, Zhang Jiang,
Ximing Liu, Xiaoli Gong*

Nankai University

Pen-Chung Yew

University of Minnesota

Wenwen Wang

University of Georgia

1

2

Introduction

Dynamic Binary Translation(DBT)
“A Key Enabling Technology”

Cross-ISA Virtualization Dynamic Instrumentation

3

Introduction

The scalability of DBT is limited by computing resources

Saturate around
speedup of 2.0x

• QEMU is a trending DBT
• Parallel programs from PARSEC
• On x64 dual-core machine

4

Introduction

Goal: Enable DBT to utilize compute resources across nodes

Host OS

Distributed DBT

Host OS

Guest Application

Host OS

Hardware Hardware Hardware

5

Introduction

Goal: Enable DBT to utilize compute resources across nodes

In a distributed emulator...
• How to maintain guest cache coherence?

• Transparently

• How to emulate guest system calls?
• Side effect to host kernel

• How to emulate guest atomic operations?
• Equivalent atomic sematic between RISCCISC

6

Introduction

How does DBT work?

Guest Code

Intermediate Code

Host Code

Tiny Code Generator (TCG)

7

Introduction

How does DBT work?

Host OS

Guest Application

Guest Mem Region

Execute

Translate

DBT

TCG Thread

8

Implementation

What should Distributed DBT looks like?

TCG Thread

Host OS Host OS

Guest Application

Host OS

Guest Mem Region

Distributed
Shared
Memroy

Communicator
Master Node Worker Node1 Worker Node2

Manager

9

Implementation

How to keep cache coherence?

For the Distributed Shared Memory Region...
• At what granularity?

• Cache line size? Page size? Larger?
• How to check privilege?

• Software-based instrumentation: check on every memory access
• Hardware-based: MMU – host page level check

• Which type of protocol?
• Distributed / Centralized
• MSI

10

Implementation

How to keep cache coherence?

State Page Protection
Modified RW
Shared R-
Invalid --

• Utilize host MMU to do state check

• Synchronize granularity = 4K(host page size)

11

Implementation

The problem of system calls

Syscall
fopen()

input.txt input.txt

File Missing

• Eg. fopen() by a worker thread at
node#2 affects
• User-space file descriptor
• Kernel-space resource manager

• Syscalls also affects host kernel

12

Implementation

The problem of system calls – Syscall Delegate

Local SyscallGlobal Syscall

read, write, openat, open, fstat, close, stat64,
lstat64, fstat64, futex, writev, brk, mmap2,
mprotect, madvise, mumap, clone, vfork, futex

gettimeofday, clock_gettime, exit, nanosleep, ...
all the rest

Master Node Slave Node

• Syscall parameters
• Guest CPU state

13

Implementation

The emulation of atomic operations

CISC
x86

LL(Load-linked)
SC(Store-conditional)

CAS(Compare and Swap)
Translate?

RISC
ARM, MIPS...

14

Implementation

The emulation of atomic operations

Hierarchical lock
1. Intra-node: Consistency model translation[ArMOR]
2. Inter-node: MSI Coherence Protocol – Sequential

15

Optimization

Page Split: The false sharing overhead

• Probability: cache line size 64B page size 4096B
• Cost: cache miss 23 cycles network + pagefault >= 120000cycles

16

Optimization

Page Split: The false sharing overhead

• Reduce false sharing possibility
• Compatible with cache coherence protocol

17

Optimization

Hint-based thread scheduling: data sharing among nodes

TCG Thread

Host OS Host OS

Guest Application

Host OS

Guest Mem Region

Distributed
Shared
Memroy

Communicator
Master Node Slave Node 1 Slave Node 2

Manager

Data Sharing

18

Optimization

Hint-based thread scheduling: data sharing among nodes

Source Code Hint

Means “call DQEMU_scheduler” to
DBT

19

Optimization

Page forwarding: to cover the network latency

trigger
forward / prefetch

……

10 pages

Continuous Virtual Memory Space

recordrecordrecord

page cache

trigger
forward / prefetch

20 pages

20

Results

Experiment Setup

Network TP-Link TL-SG1024DT Gigabit Switch
Processor Quad-core Intel i5-6500@3.30GHz CPU
Memory 12GB
Kernel Linux 4.15.0 Ubuntu 18.04
Workload micro bench, PARSEC-3.0
ISA Guest: ARM Host: X64
Baseline QEMU-4.2.0

Access Type Throughput(MB/s) Latency(us)

QEMU Sequential Access 173.06 -

Remote Sequential Access 7.88 410.5

Page forwarding Enabled 108.01 83.2

21

Results

Memory Access Performance

Access Type Throughput(MB/s) Latency(us)

QEMU Sequential Access 173.06 -

Remote Sequential Access 7.88 410.5

Sequential memory access

Memory

QEMU

Memory

DQEMU

Memory

DQEMU

Access Type Throughput(MB/s) Latency(us)

QEMU Sequential Access 173.06 -

22

Results

Memory Access Performance

Access Type Throughput(MB/s)

QEMU Access of 128 bytes 20,259

False Sharing of 1 Page 2,216

Page Splitting Enabled 75,294

False sharing

23

Results

Atomic Operation Performance

5.2
6.8

9.5

16.5

21.3

25.6

0.48

1 2 3 4 5 6
0.00

5.00

10.00

15.00

20.00

25.00

30.00

Slave Node(s)

El
ap

se
d

Ti
m

e(
s)

DQEMU-1

QEMU-1

4.0

2.1

1.6 1.4 1.2 1.2

3.4

1 2 3 4 5 6
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Slave Node(s)

El
ap

se
d

Ti
m

e(
s)

24

Results

Scalability - Ideal

1.00

1.97

2.97

3.98

4.93

5.94

1.04

1 2 3 4 5 6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Slave Node(s)

N
or

m
al

iz
ed

 S
pe

ed
up

DQEMU

25

Results

Scalability – Parallel Programs

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6

N
or

m
al

ize
d

Sp
ee

du
p

blackscholes

origin qemu-4.2.0

26

Results

Scalability – Parallel Programs

0

1

2

3

4

5

6

1 2 3 4 5 6

N
or

m
al

ize
d

Sp
ee

du
p

blackscholes

origin forwarding full qemu-4.2.0

27

Results

Scalability – Heavy data sharing program

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e
Slave Nodes

x264

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Slave Nodes

x264

pagefault
syscall

exec

28

Results

Discussion

• A more scalable coherence protocol?

• Random memory access hurts DSM.

• What kind of program suits DQEMU? How to recognize?

• Support various host ISA Heterogeneous computing?

Thank you!
Q&A

29

