
DQEMU: A Scalable Emulator with Retargetable DBT
on Distributed Platforms

Ziyi Zhao
troppingz@gmail.com
Nankai University
Tianjin, China

Zhang Jiang
1711333@mail.nankai.edu.cn

Nankai University
Tianjin, China

Ximing Liu
liuximing@mail.nankai.edu.cn

Nankai University
Tianjin, China

Xiaoli Gong∗
gongxiaoli@nankai.edu.cn

Nankai University
Tianjin, China

Wenwen Wang
wenwen@cs.uga.edu
University of Georgia
Athens, GA, USA

Pen-Chung Yew
yew@umn.edu

University of Minnesota
Minneapolis, MN, USA

ABSTRACT
The scalability of a dynamic binary translation (DBT) system
has become important due to the prevalence of multicore
systems and large multi-threaded applications. Several re-
cent efforts have addressed some critical issues in extending
a DBT system to run on multicore platforms for better scala-
bility. In this paper, we present a distributed DBT framework,
called DQEMU, that goes beyond a single-node multicore
processor and can be scaled up to a cluster of multi-node
servers.
In such a distributed DBT system, we integrate a page-

level directory-based data coherence protocol, a hierarchical
locking mechanism, a delegation scheme for system calls,
and a remote thread migration approach that are effective
in reducing its overheads. We also proposed several perfor-
mance optimization strategies that include page splitting to
mitigate false data sharing among nodes, data forwarding
for latency hiding, and a hint-based locality-aware sched-
uling scheme. Comprehensive experiments have been con-
ducted on DQEMU with micro-benchmarks and the PARSEC
benchmark suite. The results show that DQEMU can scale
beyond a single-node machine with reasonable overheads.
For "embarrassingly-parallel" benchmark programs, DQEMU
can achieve near-linear speedup when the number of nodes

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404403

increases - as opposed to flattened out due to lack of comput-
ing resources as in current single-node, multi-core version
of QEMU.

CCS CONCEPTS
• Software and its engineering → Virtual machines;
Distributed systems organizing principles; Just-in-time
compilers; •Computer systems organization→Distributed
architectures.

KEYWORDS
Dynamic binary translator, distributed system, distributed
emulator
ACM Reference Format:
Ziyi Zhao, Zhang Jiang, Ximing Liu, Xiaoli Gong, Wenwen Wang,
and Pen-Chung Yew. 2020. DQEMU: A Scalable Emulator with
Retargetable DBT on Distributed Platforms. In 49th International
Conference on Parallel Processing - ICPP (ICPP ’20), August 17–20,
2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3404397.3404403

1 INTRODUCTION
Dynamic binary translation (DBT) systems, such asQEMU [2],
Bochs [18], Simics [20] and DynamoRio [5], are important
tools for system emulation, profiling and instrumentation.
DBT is also an enabling technology for system virtualiza-
tion. Using DBT, we can translate a guest binary into its
semantically-equivalent host binary with a different instruc-
tion set architecture at runtime, and run on the host machine.
To run multi-threaded guest binaries, DBT systems such

as COREMU [28] creates multiple instances of QEMU, and
runs each instance on a physical core. It then uses a thin
software layer to handle the communication and synchro-
nization among those QEMU instances. Guest threads are
scheduled on these QEMU instances. PQEMU [13], on the
other hand, creates multiple instances of virtual CPUs (i.e.
vCPUs). Each vCPU is then 1-to-1 mapped to an emulation

https://doi.org/10.1145/3404397.3404403
https://doi.org/10.1145/3404397.3404403

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ziyi Zhao, Zhang Jiang, Ximing Liu, Xiaoli Gong, Wenwen Wang, and Pen-Chung Yew

thread, and these threads are scheduled by the host OS to
run on a multicore platform. Guests threads are scheduled
among those vCPUs. PICO [7] and the recent versions of
QEMU (after version 2.8) use a scheme similar to PQEMU
that maps the guest threads to the native threads of the host
system, and take advantage of the multi-threading support
in the host OS.

However, all of those DBT systems only target single-node
multicore processors using a shared-memory multiprocessing
model. The scalability of such DBT systems is thus limited
by the number of physical cores available in one node.

It has been shown that, for "embarrassingly-parallel" bench-
mark programs, QEMU can achieve a comparable scalabilty
to the native system as the number of threads grows [7].
However, based on our experiments, the scalablity saturates
when the thread number approaches the number of physical
cores, which is limited to around 64 cores on most multicore
systems today. One way to continue scaling the DBT perfor-
mance is to go beyond one node and allows more cores to
be available. It can also take advantage of the DBT to allow
nodes in a cluster to have different kinds of physical cores,
and create a heterogeneous distributed system to provide even
more flexibility.
In this paper, we discussed the design issues in build-

ing such a distributed DBT system. It includes thread man-
agement, support needed for a distributed shared-memory
(DSM) model and synchronization/communication schemes.
We have built a prototype based on QEMU, called DQEMU.
It includes a page-level, directory-based data coherence pro-
tocol, a hierarchical light-weight locking mechanism and
a centralized system call scheme with delegation. Several
performance optimization strategies are also proposed to
mitigate its overheads that include page splitting to mitigate
false data sharing among nodes, data forwarding for mem-
ory latency hiding, and an hint-based, locality-aware thread
scheduling scheme.
Comprehensive experiments have been conducted using

micro-benchmarks and workloads from PARSEC[3] bench-
mark suite. The results show that DQEMU can achieve a
good scalability on benchmarks such as blackscholes and
swaptions. In summary, we have made the following con-
tributions in this work.

(1) We have designed and implemented a distributed DBT
system that scales to multi-node multicore systems.
We have built a prototype, called DQEMU, to address
the issues required to implement such a system with
good scalability.

(2) We have proposed several performance optimization
schemes that include page splitting to mitigate false
sharing, data forwarding for memory latency hiding,
and an hint based thread scheduling for data locality.

(3) Comprehensive experiments are conducted to eval-
uate the performance of DQEMU and the proposed
optimization schemes.

The rest of the paper is organized as follows. Section 2 pro-
vides the necessary background to build such a distributed
DBT system. Section 3 elaborates on the issues important to
building a distributed DBT. Section 4 presents the design and
implementation of DQEMU. Section 5 describes several opti-
mization schemes aimed to mitigate its overheads. Section
6 evaluates DQEMU using micro-benchmarks and PARSEC
benchmark suite with discussions on their results. Section 7
presents some related work. Finally, Section 8 concludes the
paper.

2 BACKGROUND

Stack

Heap

Binary	Code

Libraries

Guest	Memory
Region

DBT	Stack

DBT	Heap

DBT	Binary	Code

DBT	Libraries

Guest	Base

Memory
Mapping	&
Translating
by	DBT

Guest	View Host	View

ll/sc	Hash	Table

Figure 1:Memory addressmapping between guest and
host address spaces in a dynamic binary translator
QEMU.

A dynamic binary translator takes one instruction or a
sequence of instructions from the original binary code (guest
code) and translates it into the target code (host code) on
the fly to run on the host machine. The threads in the guest
code are implemented as emulated CPU contexts in the DBT
system. In most existing DBT systems, each guest thread
is encapsulated in a host thread. The host thread is then
switched between the translation mode (in which it emulates
or translates the guest instructions and addresses) and the
execution mode (in which it executes the translated instruc-
tions and maintains the guest CPU state). The CPU state and
the register content are maintained in the execution mode
to emulate the context of the guest thread. When building a
distributed DBT, we keep this mechanism for thread man-
agement and thread migration across different nodes.
In addition to the binary translation, the address space

of the guest binary is mapped to the host address space as
shown in Figure 1. This allows each memory address in the
guest code to be translated/mapped to its corresponding host
address before the translated instructions are executed. Such

DQEMU: A Scalable Emulator with Retargetable DBT on Distributed Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

address translation is usually implemented in software. We
take advantage of this address translation process to handle
the required data coherence protocol across the nodes when
building our distributed DBT system. The data coherence
within a node of multicore processor is maintained in hard-
ware by the cache coherence protocol on the host machine.

The guest system calls are emulated in detail at the binary
level if the guest operating system is emulated at the binary
level, i.e. if the DBT is running in the systemmode. Otherwise,
if the DBT is running in the user mode, the guest system calls
are trapped and emulated by the equivalent host system
calls. When building a distributed DBT, one challenge is to
maintain a coherent system state across all nodes because
most of the system calls have some side effects on the system
states and resources.

3 IMPORTANT ISSUES IN A
DISTRIBUTED DBT SYSTEM

3.1 Transparency to Programming Models
In general, a guest parallel program can be written in two dif-
ferent programming models: (1) the shared-memory model;
or (2) the distributed-memory model. In the shared-memory
programming model, a parallel program is partitioned into
multiple tasks. All of the tasks share the same address space.
These tasks can be formed automatically by the compiler, or
by the programmer using the API supported by the runtime
such as OpenMP[8], Cilk[4] and Chapel[6]. These tasks are
handled by threads, e.g. pthreads, and scheduled by OS to run
on physical cores. In the distributed-memory programming
model, a parallel program is partitioned explicitly by the pro-
grammer into multiple independent processes. Each process
has its own address space and is not visible to other processes.
Communication and synchronization among processes are
done through explicit message passing using the API sup-
ported by the runtime such as OpenMPI[16], MapReduce[11]
and Spark[29].

When building a distributed DBT system across multiple
nodes, we have to support guest parallel programs written
in either programming model because only the binary code
is available to the DBT system. It is more straightforward to
support guest parallel programs written in the distributed-
memory model because they assume the underlying plat-
forms are distributed-memory multiprocessor systems. How-
ever, for guest parallel programs using the shared-memory
model, we need to maintain a virtual shared-memory multi-
processor system across multiple physical nodes. To accom-
plish this, we have to support data coherence across multiple
nodes transparently to maintain a virtually shared address
space. We also have to support data movement and synchro-
nization across multiple nodes that are transparent to the
guest programs. As it is more challenging to support the

shared-memory programming model, we focus our effort on
the system support needed in a distributed DBT system for
such a programming model in this paper.

3.2 Data Coherence Across Multiple Nodes
In a multi-node cluster system, each node has its own physi-
cal memory. Program data is stored and distributed among
those nodes. To emulate a shared-memory multiprocessor on
such a distributed-memory system, a data coherence protocol
is maintained across all nodes. A significant amount of re-
search has been dedicated to data coherence protocols, and
some recent schemes rely on the emerging RDMA hardware
for distributed systems (e.g. [14, 24]).
Those protocols can generally be classified into central-

ized protocols and decentralized protocols. The centralized
protocols keep the state of each data block on a master node,
while decentralized protocols maintain the coherence states
separately in each node. In a simple MSI-based coherence
protocol, the data coherence state of a data block can be in
Modified (M), Shared (S), or Invalid (I) state.
In our implementation of the distributed DBT, a central-

ized page-level directory-based MSI protocol is employed.
This is obviously not the most scalable design. Nevertheless,
it provides a starting point that has an acceptable perfor-
mance with minimal engineering effort. Designing more
optimal data coherence protocols for such a distributed DBT
system is beyond the scope of this paper. We give more
details on the implementation of our MSI protocol in Sec-
tion 4.2, and some of its optimization schemes are discussed
in Section 5.1.

3.3 Memory Consistency
A memory consistency model describes the reordering al-
lowed for the memory operations on a core that is observable
to other cores. The memory operations within a core can be
reordered or bypassed without strictly observing the order
specified in the program to improve their performance, es-
pecially for multiple-issue out-of-order cores that support
branch prediction using speculative execution. Some well-
known consistency models include the sequential consistency
model used in most programming languages, the TSO model
on Intel X86 processors, and the relaxed consistency model
on ARM processors. Guest binaries can be generated based
on a consistency model that is different from that of the host
machine. Some special instructions such as fence instruc-
tions can be used to make sure the memory operations are
committed on the host machine that comply with the guest
machine’s consistency model.
Some recent research has produced efficient schemes to

enforce memory consistency models across guest and host

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ziyi Zhao, Zhang Jiang, Ximing Liu, Xiaoli Gong, Wenwen Wang, and Pen-Chung Yew

machines with different consistency models for DBT sys-
tems [19]. Recent QEMU versions has adapted such schemes
for cores within a node [7]. We use a two-level approach in
DQEMU. At the first level, the current QEMU in each node
has incorporated a memory consistency enforcement scheme
similar to the one used in PICO [7]. At the second level, to
enforce memory consistency across nodes, we use sequential
consistency because our data coherence scheme is enforced
at the page-level through explicit network communication
(similar to message passing). It is by default a sequential con-
sistency model, which enables us to take advantage of the
existing consistency enforcement scheme in QEMU within a
node, while maintaining strict sequential consistency across
the nodes. Even though this may not be an optimal memory
consistency enforcement scheme for a distributed shared-
memory system, the experimental results in Section 6 show
that this 2-level approach can yield acceptable performance.

3.4 Synchronizations
At the binary level, atomic instructions are used to imple-
ment various high-level synchronization mechanisms such
as semaphores andmutexes, as well as lock-free and wait-free
algorithms [1].
For example, the pair of instructions, Load-Linked and

Store-Conditional (LL/SC), are used on the reduced in-
struction set architecture (RISC) such as ARM processors.
While Compare-and-Swap (CAS) is used on Intel X86 ma-
chines that have a complex instruction set architecture (CISC).

It is a challenging problem to provide equivalent semantics
across ISAs with different atomic instructions and memory
models in DBTs. For example, LL/SC can be used correctly
to implement a lock-free data structure, while a CAS-based
implementation may suffer the ABA problem [12]. The ABA
problem can occur in a multi-threaded program because
when two consecutive memory accesses from a thread to the
same address that yield the same value (such as A) cannot
guarantee that no value update (such as B) by another thread
has been made to the same address between the two ac-
cesses. In the case of LL/SC, a memory update to the address
accessed in the pair of LL/SC instructions can be detected
through hardware that prevents the ABA problem (i.e. SC
will fail). But, when the guest LL/SC pair are emulated by
the host CAS instructions to protect the same memory ad-
dress accessed by LL and SC, the ABA problem could occur
without a careful implementation [19, 21, 26, 28].

When building a distributed DBT, we have to handle the
synchronization events among all virtual CPUs. Considering
that the virtual CPUs may be deployed on different nodes, we
have implemented a two-level mechanism to handle atomic
instructions, i.e. an inter-node synchronization protocol com-
bined with an intra-node synchronization through atomic

instruction translation. We have also avoided the ABA prob-
lem by emulating the LL/SC across nodes with a global LL/SC
hash table. More details are presented in Section 4.4.

4 SYSTEM DESIGN AND
IMPLEMENTATION

Figure 2 shows the overall organization of DQEMU. As men-
tioned in Section 3, we use a centralized protocol to enforce
data coherence among nodes to simplify our implementation.
Hence, we designate a node as the Master Node and the rest
of the nodes are Slave Nodes. Each node runs an instance of
DQEMU, i.e. we have a cluster of DQEMU instances in our
system. However, to simplify our presentation, if there is no
confusion, we will call the entire system DQEMU, instead of
"a cluster of DQEMU instances".

In a thread-based programming model, there is generally
a main thread initiated from the main function in the guest
binary (represented as the solid bold wavy line in the master
node in Figure 2). The remaining guest threads are spawned
by the main thread directly or indirectly, and are scheduled
among the slave nodes and the master node. Every guest
thread is encapsulated as a TCG-thread in DQEMU (repre-
sented as the solid thin wavy line in the nodes in the figure).
A TCG-thread is a thread created by QEMU that switches
between translating the guest binary and executing the trans-
lated host binary as needed.

There are two kinds of helper threadsworking for the guest
threads to carry out various logistic functions. They are (1)
communicator thread that handles data transfer and syscall
requests from a slave node (shown as a dotted wavy line in
each slave node), and (2) manager threads that handle data
coherence protocol and execute syscalls requests from slave
nodes (shown as the broken wavy lines in the master node).
Each slave node will have a manager thread as its helper
thread residing in the master node.
A unified distributed shared-memory address space is

formed that includes all of the guest memory regions (shown
in Figure 1) in all DQEMU instances . We use a page-level
directory-based data coherence protocol in DQEMU, and the
master node is responsible for maintaining the directory and
enforcing the coherence protocol.
In the user mode, system resources such as semaphores

and files are managed by the host operating system. Guest
threads request and access the resources through system
calls. The global state of the system and resources are main-
tained centrally by the master node. The system calls from
a slave node will be forwarded to the master node through
its communicator thread, and handled by its corresponding
manager thread on the master node. The details of the syscall
delegation mechanism are explained in Section 4.3.

DQEMU: A Scalable Emulator with Retargetable DBT on Distributed Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Application

Execute

Distributed	
Shared	
Memory

Execute Execute
Guest	Mem
Region

Guest	Mem
Region

Guest	Mem
Region

Host	OS Host	OS Host	OS

Master	Node Slave	Node#1 Slave	Node#2

Translate Translate Translate
TCG	Thread

Communicator

Manager

main	Thread

Figure 2: An overview of DQEMU organization

4.1 Thread Creation and Scheduling
When a guest thread needs to be created by an existing
guest thread in DQEMU, the creation event is trapped by in-
strumenting fork(), clone() and vfork() in Linux. There
are mainly two steps in emulating the creation of a guest
thread: (a) creating a host thread, and (b) setting it up as a
TCG-thread. To fully emulate this procedure remotely, we
clone on the remote node the CPU context of the parent
thread. The parameters of the thread creation syscalls are
collected and sent to the remote node. And then, the thread
creation syscall is executed on the remote node with the two
steps mentioned earlier. It holds an identical execution envi-
ronment as if a thread is created locally. The data required by
the created thread will be transmitted to the node through
the coherence protocol when accessed.
Thread scheduling and placement have been researched

extensively. In a distributed system such as DQEMU, the
communication/synchronization and data movement can
cause significant overheads. Locality-aware thread sched-
uling schemes, i.e. placing threads that have a significant
amount of data sharing on the same node, can eliminate a
lot of data movement and communication/synchronization
overheads [23, 27]. It is very important to detect data sharing
among threads and group them accordingly. To demonstrate
the scalability of DQEMU with an acceptable engineering
effort, we instrument the application source code with thread
semantic information, i.e. a hint-based scheme, so that the
DQEMU framework can recognize the hints and schedule the
threads correctly. More details are discussed in Section 5.3.

4.2 Distributed Shared Memory Protocol
Apage-levelMSI-based coherence protocol is used inDQEMU.
Read and write operations to a specific page issued by guest
threads are captured by a page protection mechanism in
DQEMU, and a state machine is maintained and driven by
the page fault events. It is worth noting that the page protec-
tion mechanism is only for the memory accesses to the guest
memory regions from the guest threads. The helper threads in

DQEMU will enforce the coherence protocol, but their own
memory accesses will not be affected by such a protocol.

The directory of the coherence protocol is maintained by
the master node. If a page is not available in a slave node,
the communicator thread in the node will send a request to
its corresponding manager thread on the master node. The
manager thread looks up the directory to locate the page,
fetch the page content and forward it to the requesting node.
Taking advantage of the centralized page forwarding mecha-
nism, the required page can be pushed to the slave node in
advance to reduce memory latency, which is explained in
Section 5.2.
Because of the potential false data sharing when we en-

force data coherence at the page level, we propose an adap-
tive scheme to adjust the granularity of the coherence en-
forcement at runtime. Details of this optimization are in
Section 5.1.

4.3 Delegation of Syscalls
As mentioned earlier, the system state in DQEMU is main-
tained in the master node. Each thread accesses the system
state with the help of a delegation mechanism on the master
node. This approach avoids the need to maintain consistency
of the system state in each node, if all syscalls are to be ex-
ecuted locally. The guest thread on the slave node traps its
system calls and send the necessary information to the mas-
ter node that includes guest CPU context, syscall number
and the parameters.
We classify the syscalls into local and global syscalls. Lo-

cal syscalls such as gettimeofday can be processed locally
without the need to send it to the master node.Global syscalls
such as read and write that need to be made visible to all
other guest threads, should be sent to the master thread and
processed there. Currently, only 19 syscalls that are neces-
sary to support all of our benchmarks are implemented as
global syscalls while others are left as local syscalls. This list
could be updated as more benchmarks are supported.

In the user mode (as opposed to the system mode), DQEMU
translates the guest syscalls to their equivalent host syscalls.
If the argument of the syscall contains a pointer to the guest

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ziyi Zhao, Zhang Jiang, Ximing Liu, Xiaoli Gong, Wenwen Wang, and Pen-Chung Yew

address space, it will be converted to the corresponding host
address in the guest memory region in DQEMU. To maintain
data coherence, if the arguments of the syscall is a pointer, its
corresponding page will be migrated to the master node and
updated there. If the syscall modifies the page, the modified
page will be set to Invalidate on the slave nodes. It will
then be forced to fetch the latest version from the master
node when it is required.

4.4 Atomic Instructions and Mutex
We use a two-level locking mechanism to handle the syn-
chronization instructions in DQEMU. At the first level, each
node handles its atomic instructions through the existing
scheme in QEMU. At the next level, the master node will
work as an arbiter for the atomic operations from different
nodes because the data coherence protocol needs to be in-
volved in such atomic operations, which is centralized at the
master node.

Slave#1 Slave#2Master

Page	Request
Page	Content

Page	Request

Page	Content
Page	Request
Page	Content

Futex_wait

Page	Request
Page	Content

Futex_wake
Futex_wait

Page	Content
Page	Request
Page	Content

Page	Request

Locked

Try	Lock
Fail

Try	Lock
Suc

Waiting

Try	Lock
Suc

Figure 3: An example of spin lock competition be-
tween two nodes.

As shown in Figure 3, a CAS instruction is handled simi-
larly to a write operation that requires its page to be in the
Modified state to complete its execution. Taking advantage
of the coherence protocol, only one node can exclusively hold
the Modified page. Threads in other nodes will spin andwait.
They may use the syscall futex_wait after certain period of
time, and be waken up later by the syscall futex_wake when
the lock is released.

In DQEMU, the futex is handled by the syscall delegating
mechanism explained in Section 4.3. Generally, a wait queue
is maintained in OS to record the status of threads waiting
for the futex semephore. To emulate this functionality in a
distributed environment, we have implemented a futex table
to support a distributed futex syscall.
On the other hand, if the two threads competing for the

lock are from the same node and the page is in the Modified
state, the guest atomic instructions will be translated into the
equivalent host atomic instructions, which can be handled
efficiently using the existing scheme in QEMU [7].

For the LL/SC instructions, a global LL/SC Hash Table is
maintained in each DQEMU instance. Each time an LL in-
struction is encoutered, its guest thread ID and the guest
address are recorded in the hash table. Its corresponding
SC instruction will look up the hash table and check if the
thread ID matches. If the thread ID does not match, the SC
instruction fails. If the SC succeeds, the entry in the hash
table is deleted. Also, if the hash table is not empty, every
store instruction needs to be instrumented to check the
hash table and record its thread ID if it has a hit on the hash
table. Because the time between an SC and LL is usually very
short, the number of such checks on stores is usually very
small.

To correctly handle the race condition between the thread
ID check and the store operation in SC, the SC is executed
sequentially. For simplicity, we do not check the inter-node
store instructions. Taking advantage of the coherence pro-
tocol, we invalidate the corresponding table entry if the page
containing the exclusive address is marked as Invalidate
state. In other words, if the page containing the exclusive
variable is updated on another node, we simply consider the
invalid flag has been set. It is a false positive solution, i.e. the
SC instruction may fail even though the exclusive variable
is not modified. However, this only causes additional retries
without hurting the correctness of the result.

5 SYSTEM OPTIMIZATION
5.1 Mitigating False Sharing with Page

Splitting

False	Sharing	Page Shadow	Pages

Figure 4: Page Splitting Example. A false-sharing page
is split into 4 shadow pages. Each shadow page holds
a separate region of the original page with the same
page offset.

To take advantage of the existing system support at the
page level, we implement our data coherence protocol at the
page level. However, two threads on different nodes writing
to different areas of the same guest page will cause this page
to be passed back and forth between the two nodes, known
as false sharing. To mitigate this problem, we propose a page
splitting scheme to cut down such false sharing, while at the
same time maintaining the original page-based coherence
protocol.
To do so, a guest page suffering false sharing is split into

several independent guest pages (shown as Shadow Pages

DQEMU: A Scalable Emulator with Retargetable DBT on Distributed Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

in Figure 4). Each page holds a separate part of the original
page content with the same page offset. In this way, the page
content is distributed to different pages without false sharing,
and each new page can be monitored with its respective
protection mechanism using the original data coherence
scheme.
A mapping table is also created to hold the mapping of

the non-overlapping regions in the false-sharing page to
their corresponding shadow pages. Such address translation
can be done during of the address translation phase from a
guest address to a host address, which is part of the binary
translation and thus brings very minimal additional runtime
overhead (due to the table lookup).

In the DQEMU framework, the master node is responsible
for handling page requests from threads. False data sharing
can be detected if a page is written by multiple threads to
different parts of the page. The page splitting is then acti-
vated by the master node when detected. The master node
probes the guest space to find available continuous space
for shadow pages, i.e. the address region not used by the
guest application. And then, the translation table is updated
and broadcast to all salve nodes. The shadow pages will con-
sume some of the virtual space of the application, but the
coherence protocol requires no change. Currently, most of
the modern processors support 64-bit address space, which
is more than enough to accommodate needed shadow pages.

5.2 Latency Hiding with Data Forwarding
Network latency is a critical performance issue in distributed
shared memory (DSM) system. There has been a tremendous
amount of research on how to mitigate such latency by using
prefetching [22], forwarding [25], multithreading, [22, 24],
and high speed hardware [14]. In DQEMU, we use data for-
warding to hide some of the network latency.

A page-request history is maintained on the master node.
The master node will use the history information to forward
a page to the target node with a high use probability. We use
an algorithm similar to the read-ahead mechanism in the
Linux virtual file system [15] to identify the streams of most
recently requested pages.

The page forwarding operation is managed by the master
node. And the operation is handled by the helper threads.
The forwarded pages are inserted in the guest address space,
and marked as in Shared state to mitigate the overhead of
mis-prediction.

5.3 Hint-Based Locality-Aware Scheduling
The memory access latency caused by true data sharing
cannot be eliminated by page splitting and page forwarding.
It can be an update to the globally-shared variables, or data
transfer in programswith a pipeliningmodel, e.g. those using

a producer-consumer model. To avoid excessive data transfer
among nodes, a hint-based locality-aware thread scheduling
scheme is used to balance the workload of computation and
memory access.

The data sharing behavior among threads is first analyzed.
A group number is assigned to each thread, and threads with
extensive data sharing are assigned with the same group
number. The group number is specified as an operand of the
no-op instruction so that the semantic of the program is not
changed. The no-op instruction is instrumented, and used as
a hint that can be detected by the DBT during the execution.
It is used for locality-aware thread scheduling.

It is worth noting that grouping threads/tasks for schedul-
ing is very common in thread-based parallel programming.
Pipelining is another popular parallel programming model,
which can also be grouped after pipeline unrolling to elimi-
nate complex data dependencies. We find such a scheme can
also reduce excessive cross-node memory accesses.

6 EVALUATION
6.1 Experimental Setup
In order to evaluate the DQEMU framework, we have im-
plemented a prototype based on QEMU-3.0.0, which was
the most up-to-date version when we started this project.
We use a small-scale cluster composed of 7 workstations as
the hardware testbed. They are connected by a TP-Link TL-
SG1024DT Gigabit Switch with Ethernet cables. The average
TCP round-trip latency is on average 55 microseconds (a typ-
ical latency in Ethernet-based clusters [10]). The bandwidth
of the network is 1Gb/s. Each cluster node is equipped with
an Intel i5-6500 quad-core CPU running at 3.30GHz with a
6MB last-level cache and 12GB main memory. The operating
system is Ubuntu 18.04 with Linux kernel 4.15.0.

The workload used in the evaluation includes benchmark
programs from the PARSEC 3.0 benchmark set [3], and sev-
eral micro-benchmarks we developed to measure the critical
performance of DQEMU. In all of our experiments, we take
ARM as the guest ISA and x86_64 as the host. The bench-
mark programs are compiled to ARM binaries with all libraries
statically linked. We use QEMU 4.2.0 as the baseline for per-
formance comparison, which is the latest version of QEMU
when we did our evaluation. Every experiment is executed
three times and their arithmetic means are used to represent
the performance results.

6.1.1 Performance Study with Micro-benchmarks. To bet-
ter understand the performance of the DQEMU, we have
designed several simple micro-benchmarks to measure the
critical performance parameters including performance scal-
ability, atomic operations and page access latency.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ziyi Zhao, Zhang Jiang, Ximing Liu, Xiaoli Gong, Wenwen Wang, and Pen-Chung Yew

Performance Scalability. In this study, we let the main
thread create 120 threads to work on a micro-benchmark,
and then wait until the last thread to complete. Each thread
tries to calculate 𝜋 using Tyler series for 65,536 times to sim-
ulate a compute-intensive workload. We measure the time
from the start of the task creation to the completion of the
last thread. We incrementally increase the number of slave
nodes in the cluster, and schedule the threads equally among
the nodes. We measure the speedup of DQEMU with 120
threads running on different number of slave nodes. The
baseline is a single node running 120 threads on QEMU 4.2.0.

1.00
1.97

2.97
3.98

4.93
5.94

1.04
1 2 5 6

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

3 4

Sp
ee

du
p

DQEMU QEMU-4.2.0

Slave Nodes

Figure 5: Performance scalability: speedup over a sin-
gle node for 𝜋 calculation using Taylor series with 120
threads. Each thread calculates 𝜋 for 64K times with
no data sharing among threads.

Figure 5 shows the performance scalability of DQEMU.
This is an "ideal" scalability of DQEMU as the workload is an
"embarrasingly parallel" programwithout any data exchange
or synchronization (except a barrier synchronization at the
end). It shows that DQEMU can support highly-scalable
workload with minimal performance overhead. The dash
line in the figure refers to the speedup ratio when running
the same workload on one node (with 4 cores). It shows a
slowdown of about 4%, which is caused by the remote thread
creation and the final barrier synchronization.

Atomic Instructions and Mutex. To measure the synchro-
nization overhead, we use the main thread to create 32
threads and schedule them evenly among the nodes. All
these 32 threads try to acquire a mutex lock, and release it
immediately after acquiring it. We design two scenarios to do
the measurements. In the worst case scenario, the 32 threads
are competing for a single global lock, and each thread tries
to acquire and release the lock 5,000 times. In the best case
scenario, there is a separate private lock for each thread, and
each thread tries to operate on the lock 500,000 times. We
measure the performance for both scenarios and the results
are in Figure 6.
It can be seen that, in the worst case scenario, the best

performance outcome is achieved when there is only one
slave node. The node will hold the page containing the mutex
lock variable. The performance gets worse when more nodes
are involved. There will be contention among the nodes and

5.2
6.8

9.5

16.5

21.3

25.6

0.48

4.0
2.1 1.6 1.4 1.2 1.2

3.4

1 2 3 4 5 6
0.00

5.00

10.00

15.00

20.00

25.00

30.00

Slave Node(s)

El
ap

se
d

Ti
m

e(
s)

(b)

DQEMU-1

QEMU-1

DQEMU-2

QEMU-2

Figure 6: Mutex performance. The time to complete
mutex operations in two scenarios. Scenario-1 (worst
case): 32 threads are created to acquire and release a
global lock 5000 times (shown as DEQEUMU-1 and
QEMU-1). Scenario-2 (best case): 32 threads are created
to acquire and release their own private locks 500,000
times (shown as DEQEMU-2 and QEMU-2).

the data coherence overhead for the page holding the mutex
lock variable. They will become the performance bottleneck.
As more nodes get included in the cluster, the more lock con-
tention will be incurred, which will cause mutex to fall back
to a remote futex syscall, leading to the worst performance.

In the best case scenario, the performance of the intra-node
atomic operation is almost identical to the original single-
node QEMU. However, as the number of nodes increases,
the execution time begins to come down linearly as there is
less resource contention among 32 threads. Comparing with
the single-node DQEMU, a 3.33 times speed up is achieved
when there are 6 nodes in the cluster.

Page Access Latency. We measure memory access latency
in different situations that include local accesses, remote
accesses, and the improvement due to data forwarding and
false-sharing mitigation. To perform the measurements, we
reserve 1GB guest space on the master node, and use a test
program to issue memory access requests from the slave
nodes. The test program walks through the reserved space
sequentially with an increment of 1 byte. Page forwarding is
triggered after there are 4 sequential page requests. We also
measure the latency caused by the network transmission
when the page accessed is not locally available, i.e. the time
consumed by the page fault handler.
In the test of false sharing, 32 threads are created and

scheduled evenly among 4 slave nodes. Each thread accesses
different sections of the same page, with 128 bytes in each
section. Each thread walks through its section sequentially
for 20M times with an increment of 1 byte to calculate the
average bandwidth. Page splitting is triggered after a page is

DQEMU: A Scalable Emulator with Retargetable DBT on Distributed Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

requested by different nodes at different addresses over 10
times. The results are shown in Table 1. To make a compari-
son, we run the same workload on vanilla QEMU-4.2.0 on
single node as the baseline.

Access Type Throughput(MB/s) Latency(us)
QEMU Sequential Access 173.06 -
Remote Sequential Access 7.88 410.5
Page forwarding Enabled 108.01 83.2
QEMU Access of 128 bytes 20,259 -
False Sharing of 1 Page 2,216 -
Page Splitting Enabled 75,294 -

Table 1: Memory performance of DQEMU. Through-
put (MB/s) is the average bandwidth when accessing
the target memory region. Latency (microseconds) is
the average time needed for the page fault handler to
transmit a remote page via coherence protocol. Only
the latency of remote memory accesses is measured.

It can be seen in Table 1 that thememory access bandwidth
drops dramatically when the target page is not available
locally. According to themeasurements, a request to a remote
page takes about 410.5 microseconds (i.e. about 1.35M cycles)
on average on our platform. Since the network bandwidth
of our experimental platform is about 1Gb/s, ideally it takes
about 40 microseconds (i.e. about 132K cycles) to transmit
one page, which is the lower bound of remote page access
cost. Compared to a page fault, which usually takes around
2,000 cycles [9], it poses a significant performance overhead.
It gets worse if the data locality is poor or there is data
sharing among nodes. Therefore, eliminating massive page
fault latency with data forwarding and page splitting are
necessary and effective measure.

It can be seen that after using page forwarding, the mem-
ory bandwidth is increased by about 13.7 times (from 7.88MB/s
to 108.01MB/s), which is approaching upper bound of the
network bandwidth (1Gb/S). It can also be seen that the
memory bandwidth is significantly improved after the false
sharing eliminated by page splitting. The memory access per-
formance can be improved by about 33.98 times, and even
exceeds the single-node QEMU since the memory access
workload is running in parallel on different nodes.

6.1.2 Performance Study on PARSEC Benchmarks. We use
several programs from PARSEC 3.0 benchmark suite to eval-
uate the performance of DQEMU. Since memory access la-
tency is a major bottleneck of the system, we select two
types of programs from the benchmark suite based on their
memory behavior.
The blackscholes, swaptions have shown good data

locality with light data sharing. They are distributed-system
friendly programs, and can be easily fitted into the DQEMU
framework. The two programs are configured to run on 32

threads, and the threads are scheduled evenly among the
nodes. The native dataset is used as the input.

The test results are shown in Figure 7. It can be seen that
these two programs show good scalability as the number of
nodes increases. Especially, blackscholes shows near linear
speedup as the node number increases. We also measure the
performance gain of our optimization, i.e. page forwarding
and page splitting. Since blackscholes is a data intensive
workload with a regular access pattern, the performance is
improved significantly by page forwarding, from 15.7% to
22.7%, with 17.98% on average. When the two optimizations
are applied together, the performance can be improved from
16.6% to 30.9%, wtih 23.8% on average. The swaptions is
a data-parallel program with little data sharing and has no
input. Its false data sharing can be improved by page splitting
from 6.1% to 14.7%.

24 18 15 14 13 13
7 20 52 23 53 23 origin

origin 1586 1100 952 863 833 803 pagefault 52141
origin_sub 100 101 102 103 104 105 syscall 44
origin_res 1486 999 850 760 729 698 execute 340000
prefetch_sub 400 300 350 350 350 350
prefetch_res 1186 800 602 513 483 453 origin
DPG_sub -10 10 15 20 25 30 pagefault 15214
DPG_res 790 587 493 458 423 syscall 122141

1486 1486 1486 1486 1486 execute 380000
origin 1 1.8 3.23 3.79 4.13

1.33 2.1 3.03 3.74 4.41 5.07 1.9
full 1.33 2.1 3.93 4.73 5.41 1.261682
qemu-4.2.0 1.26 1.26 1.26 1.26 1.26 1.26
x264:master-share
ferret:ms=share- 15 12 16 15

freqmine:ms

DPG++
origin 8.12 39

qemu-3.0.0 1342 1342 1342
18 15 13 13

52 53 23
origin 1586 1982.5 2222 1241 1176 1111
origin_sub 0 0 0 0 0 105
origin_res 1586 1982.5 2222 1241 1176 1006
prefetch_sub 100 100 100 100 100 100
prefetch_res 1486 1882.5 2122 1141 1076 1011
DPG_sub 0 1344 1212 811 634 543
DPG_res 1486 538.5 910 330 442 468

swaptions

0

1

2

1 2 3 4 5 6

origin forwarding

full qemu-4.2.0

0

1

2

3

4

5

1 2 3 4 5

swaptions

origin_speedup prefetch_speedup

full_speedup qemu-4.2.0

1.2

swaptions

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

origin

pagefault

0

0.5

1

1.5

1 2 3 4 5 6

origin_speedup prefetch_speedup

full_speedup qemu-4.2.0

0

1

2
2.5
3

3.5
4

4.5
5

1 2 3 6

swaptions

origin forwarding forwarding+splitting qemu-4.2.0

0

N
or
m
al
iz
ed

 S
pe

ed
up

blacksholes

0.5

1.5

2.5

3.5

4.5

1 3

swaptions

Slave Nodes Slave Nodes
2 4 5 61 32 4 5 6

1

2

3

4

5

6

0

1

2

3

4

5

Figure 7: Speedup of two benchmarks, blackschole
and swaptions from PARSEC, running in DQEMU
with number of node increase. The speedup is normal-
ized to the system with one slave node.

The program x264 and fluidanimate are the type of par-
allel programs that use a fork-joint model [3]. They are not
very amenable to cluster-based shared-memory systems. The
x264 benchmark uses a pipeline for a stream process with a
fork-joint model for each video frame. There is heavy data
sharing when it is encoding dependant frames. To improve
its inherent scalability and to show the effect of the DQEMU
optimization schemes, we slightly modify the code and di-
vide the frames into independent groups and bind them to
the threads. Hint information is inserted into the code to
notify the grouping information. Note that the purpose of
such modification is not to improve the parallelism of the
guest binaries, but rather to make them more amenable to
show the impact of our proposed optimization schemes.

The fluidanimate benchmark divides a large matrix into
a grid of small blocks. Each block is assigned to a thread. In
every iteration, the threads synchronize with their neighbors.
To reduce the data communication, the threads are grouped
based on their assigned blocks in the matrix. To fit different

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Ziyi Zhao, Zhang Jiang, Ximing Liu, Xiaoli Gong, Wenwen Wang, and Pen-Chung Yew

Figure 8: Performance comparison and breakdown of
x264 and fluidanimate with 128 threads running on
DQEMU. Each bar shows the average time of each
thread, with a breakdown on the time spent on execu-
tion, page fault and syscalls. The left bar is the perfor-
mance of using the hint-based locality aware schedul-
ing. The right bar is for schedulingwith equal number
of threads on each node. The time is normalized to the
execution time of QEMU-4.2.0.

number of nodes in the cluster, we embed several grouping
strategies, and DQEMU selects the best strategies based on
the number of nodes available. Those changes affect less
than 1% of lines of the codes, but allow us to see the impact
of the optimization schemes provided in DQEMU.

The two program are configured for 128 threads. The na-
tive dataset is used as the input. For comparison, we also
measure the performance of the scheduling scheme that as-
sign equal number of threads to each slave node in a round-
robin manner. Figure 8 shows the execution time and their
breakdowns of the two applications. It can be seen that there
is a decrease in execution time as the number of nodes in-
creases. However, the time spent on page fault handling (the
top shaded section on each bar) increases dramatically if the
threads are not properly scheduled. The left bars in Figure 8
show that the hint-based locality-aware scheme can improve
the performance quite substantially.

7 RELATEDWORKS
Early versions of QEMU [2] emulates multithreading on a
multicore processor using a single thread, which significantly
limits its performance. There has been a lot of work to im-
prove the parallelism and scalability of QEMU, which allows
it to take advantage of the multicore processors.
HQEMU [17] improves QEMU performance by forming

traces from the translated basic blocks and optimizing the
traces using an LLVM backend. Such a trace formation and
optimization process is done concurrently on a separate
thread, which can improve the overall performance of QEMU

on a multicore host, even though multithreaded guest bina-
ries are still being emulated sequentially by a single thread.

PQEMU[13] tries to emulate multi-threaded guest binaries
on a multicore host machine. It improves the scalability of
the emulation by mapping the virtual CPU (vCPU) structure
in QEMU to separate threads on the host machine using a
shared-memory model. COREMU[28] creates multiple in-
stances of QEMU to emulate multiple cores using QEMU’s
full-system emulation mode.
PICO[7] uses a holistic approach to further improve the

scalability of QEMU, which has been adopted in QEMU after
version 2.8. All of the above work has made significant con-
tribution not only to the critical issues of scaling QEMU to
run on multicore hosts, but also addressing other important
issues related to emulating multi-threaded guest binaries
such as correctness of emulating atomic instructions, syn-
chronizations and memory consistency models across ISAs.

DQEMU tries to further improve the scalability of QEMU
beyond a single-node multicore host to a multi-node dis-
tributed system. To the best of our knowledge, DQEMU is
the first attempt to extend QEMU to a distributed shared-
memory system using a cluster of multicore processors. It
has been built without specific hardware support.

8 CONCLUSION
In this work, we have designed and implemented a dis-
tributed shared-memory dynamic binary translator (DBT),
called DQEMU. DQEMU extends the existing multi-threaded,
shared memory-based DBT such as QEMU on one multicore
node to a multi-node cluster in which each node is a multi-
core processor. It has several important features that include
a page-level directory-based data coherence scheme, a two-
level memory consistency model, a delegated system call
scheme, and a distributed shared-memory model.
It also has several unique optimization schemes to im-

prove its performance. It uses a page-splitting scheme to mit-
igate false sharing among nodes, a data forwarding approach
to hide data access latency, and a hint-base locality-aware
thread placement scheme to improve data locality.

Comprehensive experiments have been conducted to eval-
uate the performance of DQEMU. The result shows that
DQEMU can achieve good scalability with minimal overhead
for highly-scalable multi-threaded guest binaries. For guest
binaries with adequate inherent parallelism, the optimization
schemes implemented in DQEMU can effectively mitigate
overheads caused by false sharing (via page splitting), mem-
ory access latency across nodes (via page forwarding), and
delegated system calls to maintain coherent system state.

The source code of DQEMU is publicly available at
https://github.com/NKU-EmbeddedSystem/DQEMU

DQEMU: A Scalable Emulator with Retargetable DBT on Distributed Platforms ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

ACKNOWLEDGMENTS
This work is partially supported by the National Natural
Science Foundation of China (61702286), the National Key Re-
search andDevelopment Program of China (2018YFB1003405),
the Natural Science Foundation of Tianjin, China (18JCY-
BJC15600), the CERNET Innovation Project (NGII20190514),
and a faculty startup funding of the University of Georgia.

REFERENCES
[1] [n.d.]. Compare-and-swap-WikiPedia. https://en.wikipedia.org/wiki/

Compare-and-swap.
[2] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.

In Proceedings of the Annual Conference on USENIX Annual Technical
Conference (Anaheim, CA) (ATEC ’05). USENIX Association, Berkeley,
CA, USA, 41–41.

[3] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

[4] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E
Leiserson, Keith H Randall, and Yuli Zhou. 1996. Cilk: An efficient
multithreaded runtime system. Journal of parallel and distributed
computing 37, 1 (1996), 55–69.

[5] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An
Infrastructure for Adaptive Dynamic Optimization. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (San Francisco, California,
USA) (CGO ’03). IEEE Computer Society, Washington, DC, USA, 265–
275.

[6] Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007.
Parallel programmability and the chapel language. The International
Journal of High Performance Computing Applications 21, 3 (2007), 291–
312.

[7] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni. 2017.
Cross-ISA Machine Emulation for Multicores. In Proceedings of the
2017 International Symposium on Code Generation and Optimization
(Austin, USA) (CGO ’17). IEEE Press, Piscataway, NJ, USA, 210–220.

[8] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry-
standard API for shared-memory programming. Computing in Science
& Engineering 1 (1998), 46–55.

[9] Damon. 2019. Cost of a page fault trap. (2019). Accessed 19 Apirl 2019.
https://stackoverflow.com/questions/1022
3690/cost-of-a-page-fault-trap.

[10] Jeff Dean. 2007. Software engineering advice from building large-scale
distributed systems. CS295 Lecture at Stanford University 1, 2.1 (2007),
1–2.

[11] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[12] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. 2010. Un-
derstanding and effectively preventing the ABA problem in descriptor-
based lock-free designs. In 2010 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
IEEE, 185–192.

[13] J. Ding, P. Chang, W. Hsu, and Y. Chung. 2011. PQEMU: A Parallel
System Emulator Based on QEMU. In 2011 IEEE 17th International
Conference on Parallel and Distributed Systems. 276–283.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast remote memory. In 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
14). 401–414.

[15] WU Fengguang, XI Hongsheng, and XU Chenfeng. 2008. On the design
of a new linux readahead framework. ACM SIGOPS Operating Systems

Review 42, 5 (2008), 75–84.
[16] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J

Dongarra, Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, et al. 2004. Open MPI: Goals, con-
cept, and design of a next generation MPI implementation. In European
Parallel Virtual Machine/Message Passing Interface Users’ GroupMeeting.
Springer, 97–104.

[17] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-
Chung Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung.
2012. HQEMU: a multi-threaded and retargetable dynamic binary
translator on multicores. In Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization. ACM, 104–113.

[18] Kevin P. Lawton. 1996. Bochs: A Portable PC Emulator for Unix/X.
Linux J. 1996, 29es, Article 7 (Sept. 1996).

[19] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret
Martonosi. 2015. ArMOR: Defending Against Memory Consistency
Model Mismatches in Heterogeneous Architectures. In Proceedings of
the 42Nd Annual International Symposium on Computer Architecture
(Portland, Oregon) (ISCA ’15). ACM, New York, NY, USA, 388–400.

[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. 2002. Simics: A
full system simulation platform. Computer 35, 2 (Feb 2002), 50–58.

[21] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (2004), 491–504.

[22] Todd C Mowry, Charles QC Chan, and Adley KW Lo. 1998. Compara-
tive evaluation of latency tolerance techniques for software distributed
shared memory. In Proceedings 1998 Fourth International Symposium
on High-Performance Computer Architecture. IEEE, 300–311.

[23] Ananya Muddukrishna, Peter A Jonsson, Vladimir Vlassov, and Mats
Brorsson. 2013. Locality-aware task scheduling and data distribution
on NUMA systems. In International Workshop on OpenMP. Springer,
156–170.

[24] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-tolerant soft-
ware distributed shared memory. In 2015 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 15). 291–305.

[25] David K Poulsen and Pen-Chung Yew Pen-Chung Yew. 1994. Data
prefetching and data forwarding in shared memory multiprocessors.
In 1994 Internatonal Conference on Parallel Processing Vol. 2, Vol. 2. IEEE,
280–280.

[26] Philippas Tsigas and Yi Zhang. 2001. A Simple, Fast and Scalable Non-
blocking Concurrent FIFO Queue for Shared Memory Multiprocessor
Systems. In Proceedings of the Thirteenth Annual ACM Symposium on
Parallel Algorithms and Architectures (Crete Island, Greece) (SPAA ’01).
ACM, New York, NY, USA, 134–143. https://doi.org/10.1145/378580.
378611

[27] Ke Wang, Xraobing Zhou, Tonglin Li, Dongfang Zhao, Michael Lang,
and Ioan Raicu. 2014. Optimizing load balancing and data-locality
with data-aware scheduling. In 2014 IEEE International Conference on
Big Data (Big Data). IEEE, 119–128.

[28] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua
Zhang, and Binyu Zang. 2011. COREMU: A Scalable and Portable Par-
allel Full-system Emulator. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming (San Antonio, TX,
USA) (PPoPP ’11). ACM, New York, NY, USA, 213–222.

[29] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster computing with working
sets. HotCloud 10, 10-10 (2010), 95.

https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Compare-and-swap
https://doi.org/10.1145/378580.378611
https://doi.org/10.1145/378580.378611

	Abstract
	1 Introduction
	2 Background
	3 Important Issues in a Distributed DBT System
	3.1 Transparency to Programming Models
	3.2 Data Coherence Across Multiple Nodes
	3.3 Memory Consistency
	3.4 Synchronizations

	4 System Design and Implementation
	4.1 Thread Creation and Scheduling
	4.2 Distributed Shared Memory Protocol
	4.3 Delegation of Syscalls
	4.4 Atomic Instructions and Mutex

	5 System Optimization
	5.1 Mitigating False Sharing with Page Splitting
	5.2 Latency Hiding with Data Forwarding
	5.3 Hint-Based Locality-Aware Scheduling

	6 Evaluation
	6.1 Experimental Setup

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

